Matematică, întrebare adresată de SuntPaulina, 8 ani în urmă

.......................​

Anexe:

Răspunsuri la întrebare

Răspuns de tcostel
5

 

\displaystyle\bf\\Se~dau~numerele:\\\\x=\sqrt{4-\sqrt{7}}\\\\y=\sqrt{4+\sqrt{7}}\\\\Se~cere:\\\\a)~~x\cdot y=?\\\\ b)~~(x-y)^2=?\\\\Rezolvare:\\\\a)\\\\x\cdot y=\sqrt{4-\sqrt{7}}\cdot \sqrt{4+\sqrt{7}}\\\\x\cdot y=\sqrt{\bigg(4-\sqrt{7}\bigg)\cdot  \bigg(4+\sqrt{7}\bigg)} \\\\\\x\cdot y=\sqrt{4^2-\bigg(\sqrt{7}\bigg)^2}\\\\\\x\cdot y=\sqrt{16-7}\\\\x\cdot y=\sqrt{9}\\\\\boxed{\bf x\cdot y= 3}

.

\displaystyle\bf\\b)\\\\(x-y)^2=\left(\sqrt{4-\sqrt{7}}- \sqrt{4+\sqrt{7}}\right)^2\\\\\\(x-y)^2=\left(\sqrt{4-\sqrt{7}}\right)^2-2\left(\sqrt{4-\sqrt{7}}\cdot \sqrt{4+\sqrt{7}}\right)      +\left(\sqrt{4+\sqrt{7}}}~\right)^2\\\\\\(x-y)^2=\left(\sqrt{4-\sqrt{7}}\right)^2-2\cdot 3 +\left(\sqrt{4+\sqrt{7}}}~\right)^2\\\\(x-y)^2=(4-\sqrt{7})-2\cdot 3 +(4+\sqrt{7})\\\\(x-y)^2=4+4  -\sqrt{7}+\sqrt{7}-6\\\\(x-y)^2=8-6\\\\\boxed{\bf (x-y)^2=2}

 

 

Alte întrebări interesante