Matematică, întrebare adresată de anastasiaskorcesko05, 8 ani în urmă

1) 2х^2-х=0
2) 8х^2-2=0
3) 9х^2-6х+1=0
4) 2х^2-х+3=0
5) 2х^2-х-6=0
????????????????​

Răspunsuri la întrebare

Răspuns de QuaTeam
3

1) 2x^2-x=0

\frac{-\left(-1\right)+\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}}{2\cdot \:2}

=\frac{1+\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}}{2\cdot \:2}

= 1 + \sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}

= \sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}

\left(-1\right)^2=1

\left(-1\right)^2 = 1

4\cdot \:2\cdot \:0 = 0

=\sqrt{1-0}

=\sqrt{1} = 1

=1+1 = 2

=\frac{2}{2\cdot \:2}

=\frac{2}{4}

=\frac{1}{2}

\frac{-\left(-1\right)-\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}}{2\cdot \:2}

=\frac{1-\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}}{2\cdot \:2}

1-\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}

\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:0}

\left(-1\right)^2=1

\left(-1\right)^2=1

4\cdot \:2\cdot \:0=0

= \sqrt{1-0} = \sqrt{1} = 1

2) 8х^2-2=0

8x^2-2+2=0+2

8x^2=2

\frac{8x^2}{8}=\frac{2}{8}

x^2=\frac{1}{4}

x=\sqrt{\frac{1}{4}} = \frac{1}{2}

x=\sqrt{\frac{1}{4}} = \frac{1}{2}

3) 9x^2-6x+1=0

\left(-6\right)^2-4\cdot \:9\cdot \:1

=6^2-36

=36-36 = 0

x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:9}

x=\frac{-\left(-6\right)}{2\cdot \:9}

\frac{-\left(-6\right)}{2\cdot \:9} = \frac{6}{2\cdot \:9} =\frac{6}{18} =\frac{1}{3}

4) 2х^2-х+3=0

\frac{-\left(-1\right)+\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:3}}{2\cdot \:2}

1+\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:3}

\left(-1\right)^2=1 \left(-1\right)^2

4\cdot \:2\cdot \:3=24

=\frac{1+\sqrt{23}i}{2\cdot \:2}

\frac{-\left(-1\right)-\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:3}}{2\cdot \:2}

1-\sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:3}=1-\sqrt{23}i

1 - \sqrt{\left(-1\right)^2-4\cdot \:2\cdot \:3}

=1-\sqrt{23}i

=\frac{1}{4}-\frac{\sqrt{23}}{4}i

x=\frac{1}{4}+i\frac{\sqrt{23}}{4},\:x=\frac{1}{4}-i\frac{\sqrt{23}}{4}

5) 2х^2-х-6=0

\frac{-\left(-1\right)+\sqrt{\left(-1\right)^2-4\cdot \:2\left(-6\right)}}{2\cdot \:2}

=\frac{1+\sqrt{\left(-1\right)^2+4\cdot \:2\cdot \:6}}{2\cdot \:2}

1+\sqrt{\left(-1\right)^2+4\cdot \:2\cdot \:6}=1+\sqrt{49}

1+\sqrt{\left(-1\right)^2+4\cdot \:2\cdot \:6}

\sqrt{\left(-1\right)^2+4\cdot \:2\cdot \:6}

\left(-1\right)^2=1 1^2 = 1

=\sqrt{1+48}

\frac{1+\sqrt{49}}{2\cdot \:2}

=\frac{1+\sqrt{49}}{4}

\sqrt{49}=7

=\frac{1+7}{4}

=\frac{8}{4}

=2

x=\frac{-\left(-1\right)-\sqrt{\left(-1\right)^2-4\cdot \:2\left(-6\right)}}{2\cdot \:2}

\frac{-\left(-1\right)-\sqrt{\left(-1\right)^2-4\cdot \:2\left(-6\right)}}{2\cdot \:2}

=\frac{1-\sqrt{49}}{2\cdot \:2}

=\frac{1-\sqrt{49}}{4}

\sqrt{49}=7

=\frac{1-7}{4}

=\frac{-6}{4}=-\frac{6}{4}

=-\frac{3}{2}

x=2,\:x=-\frac{3}{2}

Sper că te-am ajutat!

Succes!


alinaraza790: vreau rezolvarea exercițiului 3 de la pagina 14va rog din manualului clasa a șaptea mulțumesc
Alte întrebări interesante