Matematică, întrebare adresată de iulialaviniaenache, 8 ani în urmă

(1/2+2/3+3/4....+99/100) ×(17/51-19/57)=​

Răspunsuri la întrebare

Răspuns de AndreeaP
2

\frac{1}{2}=1-\frac{1}{2}

\frac{2}{3} =1-\frac{1}{3}

\frac{3}{4} =1-\frac{1}{4}

...

\frac{99}{100}=1-\frac{1}{100}

Notam:

S=\frac{1}{2}+\frac{2}{3} +\frac{3}{4}+...+\frac{99}{100}

S=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+...+1-\frac{1}{100}

Avem 99 de 1

S=99-(\frac{1}{2} +\frac{1}{3} +...+\frac{1}{100})

Calculam x=\frac{1}{2} +\frac{1}{3}+...+\frac{1}{100}

Stim ca:

\frac{1}{(n+1)(n+2)} =\frac{1}{n+1} -\frac{1}{n+2}

\[ \sum_{i=1}^{99} \frac{1}{n+1}  \]=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}

\[ \sum_{i=1}^{99} \frac{1}{n+2}  \]=\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}+\frac{1}{101}

\[ \sum_{i=1}^{99} \frac{1}{(n+1)(n+2)}  \]=\[ \sum_{i=1}^{99} \frac{1}{n+1}  \]-\[ \sum_{i=1}^{99} \frac{1}{n+2}  \]

\[ \sum_{i=1}^{99} \frac{1}{(n+1)(n+2)}  \]=\frac{1}{2} -\frac{1}{101} =\frac{99}{202}

x=\frac{99}{202}

S=99-\frac{99}{202} =\frac{99\times201}{202}

Deci rezultatul nostru va fi:

\frac{99\times201}{202}\times(\frac{17}{51}-\frac{19}{57}  )=\\\\\frac{99\times201}{202}\times (\frac{1}{3}-\frac{1}{3})=   \frac{99\times201}{202}\times 0=0

Alte întrebări interesante