Matematică, întrebare adresată de Seaturtle, 9 ani în urmă

(1/2×3+1/3×5+...+1/2009×2011)×4022


tcostel: Ai o greseala ...."1/2×3+1/3×5" ???
Seaturtle: Da, multumesc :)
Seaturtle: E 1_1×3
Seaturtle: *1/1×3
tcostel: Intra in editare si corecteaza.

Răspunsuri la întrebare

Răspuns de tcostel
2
   
[tex]\displaystyle\\ \text{Folosim formula:}\\\\ \frac{2}{n(n+2)}= \frac{1}{n} - \frac{1}{n+2} \\\\ \left( \frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\cdots+\frac{1}{2009\times2011} \right)\times4022=\\\\ =\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\cdots+\frac{1}{2009\times2011}\right)\times2\times2011=\\\\ =\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\cdots+\frac{2}{2009\times2011} \right)\times2011= [/tex]


[tex]\displaystyle\\ =\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\cdots+\frac{1}{2009}-\frac{1}{2011} \right)\times2011=\\\\ \text{Observam ca fractiile se reduc 2 cate 2 si raman prima si ultima.}\\\\ =\left(\frac{1}{1}-\frac{1}{2011} \right)\times2011=\\\\ =\left(\frac{2011}{2011}-\frac{1}{2011} \right)\times2011=\frac{2010}{2011}\times 2011 = \boxed{\bf 2010}[/tex]



Alte întrebări interesante