Matematică, întrebare adresată de marianasandu08, 8 ani în urmă

1•2•3+2•3•4+…n•(n+1)(n+2)

Răspunsuri la întrebare

Răspuns de atlarsergiu
0

\color{red}S\color{w}= 1 \cdot 2 \cdot 3 +2 \cdot ... + n(n + 1)(n + 2) \\ n(n + 1)(n + 2) = \color{orange}n {}^{3}  + \color{teal}3n {}^{2}  + \color{grey}2n \\ \\   \underline{formula \: \:  pt. \:  \: n {}^{3} } :  \\ 1 {}^{3}  + 2 {}^{3}  + 3 {}^{3}  + ... + n {}^{3}  =\boxed{ \color{orange} [(\tfrac{n(n + 1)}{2} )  ]  {}^{ {}^{2} } } \\  \\ \underline{formula \:  \: pt. \:  \: 3n {}^{2} } :  \\ 3(1 {}^{2} + 2 {}^{2}  + 3 {}^{2}   + ... + n {}^{2} )  \\ = 3 \cdot \tfrac{n(n + 1)(2n + 1)}{6}  \\  = \boxed{ \color{teal}\tfrac{n(n + 1)(2n + 1)}{2} } \\  \\ \underline{formula \:  \: pt. \: 2n} :  \\ 2(1 + 2 + 3 + ... + n)  \\ = 2 \cdot \tfrac{n \cdot(n + 1)}{2}  \\  = \boxed{\color{grey}n(n + 1)} \\  \\  \\  \\  \\  \\ \implies \:\color{red} S\color{w}= [( \tfrac{n(n + 1)}{2} )  ]  {}^{ {}^{2} } + \tfrac{n(n + 1)(2n + 1)}{2}  + n(n + 1) \\   =( \tfrac{n {}^{2} + n }{2}  ) {}^{2}  +  \tfrac{(n {}^{2} + 2 )(2n + 1)}{2} + n {}^{2}  + n  \\   =  \tfrac{n {}^{4}  + 2n {}^{3} + n {}^{2}  + 2(2n {}^{3}   + 3n {}^{2}  + n) + 4n {}^{2}  + 4n}{4} \\ =  \color{red}\boxed{ \tfrac{n {}^{4}  + 6n {}^{3}  + 11n {}^{2}  + 6n}{4} }

Alte întrebări interesante