Matematică, întrebare adresată de catalincompot, 9 ani în urmă

1 Aratati ca oricare ar fi a apartine N , numarul A={a(a+1)(a+2)(a+3)}/4 se poate scrie ca un produs de doua numere naturale consecutive

2 Daca a=radica(2-radical3)+radical(2+radical3),calculati a^2 si (a-radical6)^1000

3 Stiind ca a=radical mare (3-radica5+radical(9-4radical5)) si b = radical mare (radica7-1-radical(11-4radical7)),aratati ca (2a-b)/(a+2b) este numar rational

Răspunsuri la întrebare

Răspuns de ralucamaria5995
2
exercitiu 2
a= radical (-radical3)+radical(2+radical3)
a=radical (2-1,73)+radical(2+1,73)
a=radical 0,27+radical 3,73
a=0,51+1,93
a=2,44

a^2=2,44^2=5,9536

(a-radical 6)^1000=
(2,44-radical6)^1000=
(2,44-2,44)^1000=
0




catalincompot: ms
Alte întrebări interesante