Matematică, întrebare adresată de Utilizator anonim, 9 ani în urmă

1.Calculati:
a. x= \sqrt \frac{74}{71}*[( \frac{1}{1*2} + \frac{1}{2*3}+.....+ \frac{1}{36*37}) - ( \frac{1}{37*38} + \frac{1}{38*39} +....+ \frac{1}{73*74} )]

2.Determinati cifrele distincte x si y pentru care:
a. \sqrt{1} ,(x)+4,(y) este numar rational


saoirse1: Ti.am grimis punctul 1 sa il intelegi. La punctul 2 radicalul este din1,(x) sau din toata suma?
Utilizator anonim: La punctul 2 este din toata suma

Răspunsuri la întrebare

Răspuns de saoirse1
35
1/1*2+1/2*3+.....1/36*37= 1/1-1/2+1/2-1/3+.....1/36-1/37=1/1-1/37=36/37; 1/37*38+1/38*38+....1/73*74=1/37-1/74=1/74=> 36/37-1/74=(72-1)/74=71/74;; rationalizam pe radicak din 74/71=>; x= (radical din74*71)/*71*71/74= ( radical din 74*71/74; 2)

saoirse1: 1 intreg si x/9+ 4 intregi siy/9. Introducem intrgii in fractie si obtinem (9+x)9 +(36+y)/9=(9+x+36+y)/9=(x+y+45)/9 pentru ca radical din acest numar sa fie nr rational trebuie sa iasa de sub radical adica la numitor si numarator sa avem patrate perfecte. La numitor avem 9 deci esteok. La numarator trebuia ca x+y+45=49=> x+y=4=> x=1; y=3 sau x=3; y=1
Utilizator anonim: Acesta este punctul 2?
saoirse1: da
Utilizator anonim: Va multumesc
saoirse1: intelegi ?
Utilizator anonim: Da
saoirse1: Bv. Sa nu ma pacalesti pt ca de fapt te pacalesti pe tine
Utilizator anonim: Nu va pacalesc
saoirse1: ok. Zi minunata sa ai
Utilizator anonim: Va multumesc,la fel si dumneavoastra
Alte întrebări interesante