Matematică, întrebare adresată de annamarria183, 9 ani în urmă

1+cos 2pi/5+cos 4pi/5+ cos 6pi/5 +cos 8pi/5 =?


albatran: 1+cos (2pi/5)+cos (4pi/5)+ cos ( 6pi/5 )+cos( 8pi/5)

Răspunsuri la întrebare

Răspuns de albatran
2

Răspuns:

0

Explicație pas cu pas:

fie ecuatia

z^5=1=cos0+isin0

sau z^5-1=0 in forma al;gebrica

aceasta va avea radacibile

z1---5=cos (0+2kπ)/5+isin(0+2kπ/5)  k=0;1;2;3;4

adica

x1=cos0+isin0=1

x2=cos2π/5+isin 2π/5

x3= cos4π/5+isin4π/5

x4=cos6π/5+isin 6π/5

x5=cos8π/5+isin 8π/5

x1+x2+x3+x4+x5= (Viete )= 0=0+0i ⇒

⇒1+cos (2pi/5)+cos (4pi/5)+ cos ( 6pi/5 )+cos( 8pi/5) =0

extra

si partea imaginara va fi tot 0, adica

sin (2pi/5)+sin (4pi/5)+ sin ( 6pi/5 )+sin( 8pi/5) +0


targoviste44: !?
annamarria183: nu ar trebui sa fie 1 daca cele cu cos se reduc?
targoviste44: rezolvarea conține o eroare, chiar din faza inițială, ultimul rând e doar o derivă în plus...(!?)
annamarria183: eu sunt foarte confuză.. pentru că am văzut rezolvări pentru această problemă in nr complexe, si acest exercitiu a fost dat la o teza de clasa a 9-a
targoviste44: e normal, dac-ai văzut "in nr complexe"
albatran: salut..da mersi de idea cu complexe
albatran: eu gresisem la calcul ca am luat toate valorle unghiurilor
Alte întrebări interesante