(1+i) totul la 2015
Calculati
Răspunsuri la întrebare
Răspuns de
0
(1+i)^(8k)=((1+i)^2)^(4k)=(2i)^(4k)=2^(4k)*i^(4k)=2^(4k), oricare ar fi k apartine N.
Deci (1+i)^2015=((1+i)^2016)/(1+i)=((1+i)^(8*252))/(1+i)=(2^(4*252))/(1+i)=
=(2^1008)/(1+i)=(1-i)*(2^1008)/2=(1-i)*2^1007.
Deci (1+i)^2015=((1+i)^2016)/(1+i)=((1+i)^(8*252))/(1+i)=(2^(4*252))/(1+i)=
=(2^1008)/(1+i)=(1-i)*(2^1008)/2=(1-i)*2^1007.
Alte întrebări interesante
Studii sociale,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Fizică,
9 ani în urmă