Matematică, întrebare adresată de Utilizator anonim, 9 ani în urmă

1.Rezolvati in Z ecuatia:
a)|x|=5
b)|x-5|=0
c)|x+4|=2
d)|x|=0
e)|x+6|=2
f)|x-2|=-1
g)|3x+1|=10
h) |3x+4|=19
i)|4x+10|=-3
2.Determinati A∪B stiind ca A={x∈Z/4x-3>5} si B={x∈Z/|x|≤6}
va rog,dau coroana

Răspunsuri la întrebare

Răspuns de Rayzen
2
1) \\ \\ a) \quad |x| = 5 \Rightarrow  \left\| \begin{array}{c} x=-5  \\ $sau$\\  x=5  \end{array} \right|   \Rightarrow \boxed{x \in \Big\{-5,5\Big\}} \\  \\ b)\quad |x-5| = 0 \Rightarrow  \left\| \begin{array}{c} x-5= -0 \\ $sau$ \\x-5= +0 \end{array} \right |\Rightarrow x-5 = 0 \Rightarrow \boxed{x = 5}

c) \quad |x+4| = 2 \Rightarrow \left\| \begin{array}{c} x+4 = -2 \\ $sau$ \\ x+4 = 2 \end{array} \right  \Rightarrow  \left\| \begin{array}{c} x = -2-4 \\ $sau$ \\ x = 2-4 \end{array} \right  \Rightarrow \\ \\ \Rightarrow \left\| \begin{array}{c} x= -6 \\ $sau$ \\ x = -2 \end{array} \right | \Rightarrow \boxed{x\in\Big\{-6,-2\Big\}}

f) \quad \underset{\big{\geq0}}{|x-2|} = -1$ $  (F) \Rightarrow \boxed{x\in \emptyset} \\  \\ g) \quad |3x+1| = 10 \Rightarrow \left\| \begin{array}{c}3x+1= -10 \\ $sau$\\ 3x+1 = 10 \end{array} \right \Rightarrow  \left\| \begin{array}{c} 3x = -11  \\ 3x = 9 \end{array} \right \Rightarrow  \\  \\ \Rightarrow \left\| \begin{array}{c} x = \dfrac{-11}{3} \notin\mathbb_{Z} $ \\ x = 3 \end{array} \right |\Rightarrow \boxed{x=3} \\ \\

i) \quad \underset{\big{\geq 0}}{|4x+10|} = -3 $ $ (F) \Rightarrow \boxed{x \in \emptyset }


2)\\ A = \Big\{x\in \mathbb_{Z}$ \big| $ 4x-3\ \textgreater \ 5 \Big\} \\ B = \Big\{x\in \mathbb_{Z}$ \big| $ |x|\leq 6 \Big\} \\  \\ A: \\ 4x-3\ \textgreater \ 5 \Rightarrow 4x \ \textgreater \  8 \Rightarrow x \ \textgreater \  2 \Rightarrow x \in (2,\infty)\cap \mathbb{Z} \Rightarrow x\in \Big\{3,4,5,...,\infty\Big\}\\  \\ B:\\ |x|\leq 6 \Rightarrow -6\leq x\leq 6 \Rightarrow x\in [-6,6]\cap \mathbb_{Z} \Rightarrow  $\\ \\  \Rightarrow x \in\Big\{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\Big\} \\  \\  \\ \Rightarrow \boxed{A\cup B =  \Big\{-6,-5,-4,-3,-2,-1,0,1,...,\infty\Big\}}

Rayzen: Am modificat, scrisesem intersectat la sfarsit in loc de reunit
Alte întrebări interesante