Matematică, întrebare adresată de muresancatalin, 9 ani în urmă

1) Sa se determine termenul  a_{10} al progresiei aritmetice ( a_{n _ } ) daca:
a)  a_{2__ } =48,  a_{24__ } =-150
b)  a_{25__ } =450, r= - {\frac{1}{3} __ }
2) Sa se determine ratia si suma primilor n termeni pentru progresia aritmetica ( a_{n__ } ) daca:
a)  a_{1__ } =5,  a_{26__ } =105, n=26
b) a_{1__ } =-10,  a_{n__ } =-20, n=6
c) a_{3__ } =12,  a_{14__ } =144, n=15
d) a_{1__ } =10,  a_{n__ } =8a+90, n=9

Răspunsuri la întrebare

Răspuns de Utilizator anonim
1
1a).a_2=48 \Rightarrow a_{2-1}+r=48 \Rightarrow a_1+r=48 \Rightarrow a_1=48-r \\ a_{24}=-150 \Rightarrow a_{24-1}+r=-150 \Rightarrow a_{23}+r=-150 \Rightarrow a_1+23r=-150 \\ 48-r+23r=-150 \Rightarrow 23r-r=-150-48 \Rightarrow 22r=-198 \Rightarrow r=-9 \\ a_1=48-r=48-(-9)=48+9=57 \\ a_{10}=a_{10-1}+r=a_9+r=a_1+9r=57+9 \cdot (-9)=57-81=-24
\displaystyle b).a_{25}=450 \Rightarrow a_{25-1}+r=450 \Rightarrow a_{24}+r    =450 \Rightarrow a_1+24r=450 \Rightarrow  \\ \Rightarrow a_1+24 \cdot \left(- \frac{1}{3} \right)=450 \Rightarrow a_1- \frac{24}{3} =450 \Rightarrow a_1-8=450 \Rightarrow  \\ \Rightarrow a_1=450+8 \Rightarrow a_1=458 \\ a_{10}=a_{10-1}+r=a_9+r=a_1+9r=458+9 \cdot \left(- \frac{1}{3}\right) = \\ = 458+\left(- \frac{9}{3} \right)  =458+(-3)=458-3=455
\displaystyle 2a).a_1=5,~a_{26}=105,~n=26 \\ a_2_6=105 \Rightarrow a_{26-1}+r=105 \Rightarrow a_{25}+r=105 \Rightarrow a_1+25r=105 \Rightarrow \\ \Rightarrow 5+25r=105 \Rightarrow 25r=105-5 \Rightarrow 25r=100 \Rightarrow r= \frac{100}{25} \Rightarrow r=4 \\ S_n= \frac{2a_1+(n-1) \cdot r}{2} \cdot n \\ \\ S_n= \frac{2 \cdot 5+(26-1) \cdot 4}{2} \cdot 26 \\ \\ S_n= \frac{10+25 \cdot 4}{2} \cdot 26 \\ \\  S_n= \frac{10+100}{2} \cdot 26 \\ \\ S_n= \frac{110}{2}\cdot 26 \\  \\ S_n=55 \cdot 26  \\ S_n=1430
\displaystyle b).a_1=-10,~a_n=-20,~n=6 \\ a_n=a_1+(n-1) \cdot r \Rightarrow -20=-10+(6-1) \cdot r \Rightarrow -20=-10+5r \Rightarrow  \\ \Rightarrow -5r=-10+20 \Rightarrow -5r=10 \Rightarrow r=- \frac{10}{5} \Rightarrow r=-2  \\ S_n= \frac{a_1+a_n}{2} \cdot n \\  \\ S_n= \frac{-10-20}{\not2} \cdot \not6 \\  \\ S_n=-30 \cdot 3 \\ S_n=-90
\displaystyle c).a_3=12,~a_{14}=144,~n=15 \\ a_3=12 \Rightarrow a_{3-1}+r=12 \Rightarrow a_2+r=12 \Rightarrow a_1+2r=12 \Rightarrow  \\ \Rightarrow a_1=12-2r \\ a_{14}=144 \Rightarrow a_{14-1}+r=144 \Rightarrow a_{13}+r=144 \Rightarrow a_1+13r=144 \Rightarrow  \\ \Rightarrow 12-2r+13r=144 \Rightarrow -2r+13r=144-12 \Rightarrow 11r=132 \Rightarrow \\ \Rightarrow r= \frac{132}{11} \Rightarrow r=12  \\ a_1=12-2r=12-2 \cdot 12=12-24=-12 \\ S_n= \frac{2a_1+(n-1) \cdot r}{2} \cdot n
\displaystyle S_n= \frac{2 \cdot (-12)+(15-1) \cdot 12}{2} \cdot 15 \\  \\ S_n= \frac{-24+14 \cdot 12}{2} \cdot 15 \\  \\ S_n= \frac{-24+168}{2} \cdot 15 \\  \\ S_n= \frac{144}{2} \cdot 15 \\  \\ S_n=72 \cdot 15 \\ S_n=1080
Alte întrebări interesante