1) scrie numerele naturale de 3 cufre care au cufra zecilor egala cu dublu cifrei unitatilor
2) gaseste numere naturale de 4 cifre care au suma cifrelor 9
3) stiind ca suma a trei numere consecutive este 558, afla numerele
va rog
Răspunsuri la întrebare
Problema 1
Fie numarul de forma SZU
S,Z,U - cifre; S,Z,U∈{0,1,2,3,4,5,6,7,8,9}; S ≠ 0
Z = 2 · U ⇒ Z∈ {0,2,4,6,8} ⇒ U ∈ {0,1,2,3,4}
Enuntul problemei NU precizeaza ca numerele au cifrele distincte sau diferite doua cate doua. Pentru a gasi toate numerele vom analiza ce valoare poate avea U
- U = 0 ⇒ Z = 2·0 ⇒ Z = 0
SZU ∈ {100,200,300,400,500,600,700,800,900}
- U = 1 ⇒ Z = 2·1 ⇒ Z = 2
SZU ∈ {121,221,321,421,521,621,721,821,921}
- U = 2 ⇒ Z = 2·2 ⇒ Z = 4
SZU ∈ {142,242,342,442,542,642,742,842,942}
- U = 3 ⇒ Z = 2·3 ⇒ Z = 6
SZU ∈ {163,263,363,463,563,663,763,863,963}
- U = 4 ⇒ Z = 2·4 ⇒ Z = 8
SZU ∈ {184,284,384,484,584,684,784,884,984}
Din cazurile analizate rezulta ca avem 45 de numere care respecta cerinta problemei: 100, 200, 300, 400, 500, 600, 700, 800, 900, 121, 221, 321, 421, 521, 621, 721, 821, 921, 142, 242, 342, 442, 542, 642, 742, 842, 942, 163, 263, 363, 463, 563, 663, 763, 863, 963, 184, 284, 384, 484, 584, 684, 784, 884, 984
==========================================
Problema 2
Fie abcd numerele naturale de patru cifre cautate
a,b,c,d - cifre; a,b,c,d∈{0,1,2,3,4,5,6,7,8,9} ; a ≠ 0
a+b+c+d = 9
Enuntul problemei NU precizeaza ca numerele au cifrele distincte sau diferite doua cate doua. Pentru a gasi toate numerele trebuie sa analizam ce valoare poate avea a (9 cazuri) apoi ce valoare poate lua b
- a = 1 ⇒ b+c+d =8
b = 0 ⇒ c+d=8 ⇒ cd∈{08,80,17,71,62,26,35,53,44}
abcd ∈ {1008,1080,1017,1071,1062,1026,1035,1053,1044} -9 nr
b = 1⇒c+d=7⇒cd∈{07,70,16,61,25,52,34,43}
abcd∈{1107, 1170, 1116, 1161, 1125, 1152, 1134, 1143} -8 nr
b = 2⇒c+d=6⇒cd∈{06,60,15,51,24,42,33}
abcd∈{1206, 1260, 1251, 1215, 1224, 1242, 1233} -7 nr
b = 3⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{1305,1350,1314,1341,1323,1332} -6 nr
b = 4⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{1404,1440,1413,1431,1422} -5 nr
b = 5⇒c+d=3⇒ cd∈{03,30,12,21}⇒abcd∈{1503,1530,1512,1521} -4 nr
b = 6 ⇒c+d=2⇒ cd∈{02,20,11}⇒abcd∈{1602,1620,1611} -3 nr
b = 7 ⇒c+d=1⇒ cd∈{01,10}⇒abcd∈{1701,1710} -2 nr
b = 7⇒c+d=0⇒cd=00 ⇒ abcd = 1800 -1 nr
- a = 2 ⇒ b+c+d =7
b = 0 ⇒c+d=7⇒cd∈{07,70,16,61,25,52,34,43}
abcd∈{2007,2070,2016,2061,2025,2052,2034,2043} -8 nr
b = 1⇒c+d=6⇒cd∈{06,60,15,51,24,42,33}
abcd∈{2106, 2160, 2151, 2115, 2124, 2142, 2133} -7 nr
b = 2⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{2205, 2250, 2214, 2241, 2223, 2232} -6 nr
b = 3⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{2304,2340,2313,2331,2322}
b = 4⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{2403,2430,2412,2421} -4 nr
b = 5⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{2502,2520,2511} -3 nr
b = 6⇒c+d=1⇒cd∈{01,10}⇒abcd∈{2601,2610} -2 nr
b = 7⇒c+d=0⇒cd=00 ⇒ abcd = 2700 -1 nr
- a = 3 ⇒ b+c+d =6
b = 0 ⇒c+d=6⇒cd∈{06,60,15,51,24,42,33}
abcd∈{3006,3060,3015,3051,3024,3042,3033} -7 nr
b = 1⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{3105,3150,3141,3114,3123,3132} -6 nr
b = 2⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{3204,3240,3213,3231,3222}
b = 3⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{3303,3330,3312,3321} -4 nr
b = 4⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{3402,3420,3411} -3 nr
b = 5⇒c+d=1⇒cd∈{01,10}⇒abcd∈{3501,3510} -2 nr
b = 6⇒c+d=0⇒cd=00 ⇒ abcd = 3600 -1 nr
- a = 4 ⇒ b+c+d =5
b = 0⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{4005,4050,4014,4041,4023,4032} -6 nr
b = 1⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{4104,4140,4113,4131,4122}
b = 2⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{4203,4230,4212,4221} -4 nr
b = 3⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{4302,4320,4311} -3 nr
b = 4⇒c+d=1⇒cd∈{01,10}⇒abcd∈{4401,4410} -2 nr
b = 5⇒c+d=0⇒cd=00 ⇒ abcd = 4500 -1 nr
- a = 5 ⇒ b+c+d =4
b = 0⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{5040,5004,5013,5031,5022}
b = 1⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{5103,5130,5112,5121} -4 nr
b = 2⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{5202,5220,5211} -3 nr
b = 3⇒c+d=1⇒cd∈{01,10}⇒abcd∈{5301,5310} -2 nr
b = 4⇒c+d=0⇒cd=00 ⇒ abcd = 5400 -1 nr
- a = 6 ⇒ b+c+d =3
b = 0⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{6003,6030,6012,6021} -4 nr
b = 1⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{6102,6120,6111} -3 nr
b = 2⇒c+d=1⇒cd∈{01,10}⇒abcd∈{6201,6210} -2 nr
b = 3⇒c+d=0⇒cd=00 ⇒ abcd = 6300 -1 nr
- a = 7 ⇒ b+c+d=2
b = 0⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{7002,7020,7011} -3 nr
b = 1⇒c+d=1⇒cd∈{01,10}⇒abcd∈{7101,7110} -2 nr
b = 2⇒c+d=0⇒cd=00 ⇒ abcd = 7200 -1 nr
- a = 8 ⇒ b+c+d=1
b = 0⇒c+d=1⇒cd∈{01,10}⇒abcd∈{8001,8010} -2 nr
b = 1⇒c+d=0⇒cd=00 ⇒ abcd = 8100 -1 nr
- a = 9 ⇒ b+c+d = 0
b = 0⇒c+d=0⇒cd=00 ⇒ abcd = 9000 -1 nr
Vei observa că în funcție de ce valori ia a avem un anumit număr de numere ce respectă cerințele problemei:
a = 1 avem 45 numere;
a = 2 avem 36 numere;
a=3 avem 28 numere;
a = 4 avem 21 numere;
a = 5 avem 15 numere;
a = 6 avem 10 numere;
a = 7 avem 6 numere;
a = 8 avem 3 numere;
a = 9 avem 1 număr
Total numere: 45+36+28+21+15+10+6+3+1 = 165 de numere de patru cifre care au suma cifrelor 9
=====================================
Problema 3
Notam cu:
a - primul numar
a + 1 - al doilea numar
a + 2 - al treilea numar
a + a + 1 + a + 2 = 558
3a + 3 = 558
3a = 558 - 3
3a = 555
a = 555 : 3
a = 185 primul numar
a + 1 = 185 + 1 = 186 al doilea numar
a + 2 = 185 + 2 = 187 al treilea numar