Matematică, întrebare adresată de PufoseniePuff, 9 ani în urmă

1) \frac{3}{1X4} + \frac{3}{4X7} +...+ \frac{3}{2002X2005}
2) \frac{1}{1X2} + \frac{1}{2X3} +...+ \frac{1}{n(n+1)} ,n∈N*

Răspunsuri la întrebare

Răspuns de blindseeker90
1
1) Avem relatia generala
\frac{3}{n(n+3)}=\frac{1}{n}-\frac{1}{n+3}
Atunci putem scrie termenii sumei ca
\frac{3}{1*4}=\frac{1}{1}-\frac{1}{4}
\frac{3}{4*7}=\frac{1}{4}-\frac{1}{7}
\frac{3}{7*10}=\frac{1}{7}-\frac{1}{10}
-------------------------------------------------------
\frac{3}{1999*2002}=\frac{1}{1999}-\frac{1}{2002}
\frac{3}{2002*2005}=\frac{1}{2002}-\frac{1}{2005}
Daca adunam toate aceste fractii
\frac{3}{1*4}+\frac{3}{4*7}+\frac{3}{7*10}+...+\frac{3}{1999*2002}+\frac{3}{2002*2005}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{1999}-\frac{1}{2002}-\frac{1}{2005}=1-\frac{1}{2005}=\frac{2005-1}{2005}=\frac{2004}{2005}
2) Aceeasi idee ca mai sus
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
Folosim asta pentru fiecare termen al sumei
\frac{1}{1*2}=\frac{1}{1}-\frac{1}{2}
\frac{1}{2*3}=\frac{1}{2}-\frac{1}{3}
\frac{1}{3*4}=\frac{1}{3}-\frac{1}{4}
-------------------------------------------------------
\frac{1}{(n-1)*n}=\frac{1}{n-1}-\frac{1}{n}
\frac{1}{n*(n+1)}=\frac{1}{n}-\frac{1}{n+1}
Atunci daca le adunam obtinem ca
\frac{1}{1*2}+\frac{1}{2*3}+\frac{1}{3*4}+..+\frac{1}{(n-1)n}+\frac{1}{n(n+1)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}=\frac{n+1-1}{n+1}=\frac{n}{n+1}

PufoseniePuff: multumesc mult
Alte întrebări interesante