Matematică, întrebare adresată de craytza, 9 ani în urmă

11 la puterea n + 2, minus 11 la puterea n +1, plus 11 la puterea n, totul supra 5 la puterea n + 2, plus 2 înmulțit cu 5 la puterea n + 1, plus 2 înmulțit cu 5 la puterea n se simplifica prin 37, pentru orice n numere naturale

Răspunsuri la întrebare

Răspuns de tcostel
11
  
[tex]\displaystyle \bf\\ \frac{11^{n+2}-11^{n+1}+11^n}{5^{n+2}+2\cdot 5^{n+1}+2\cdot 5^n}=\\\\ = \frac{11^n\cdot 11^2-11^n\cdot 11^1+11^n}{5^n\cdot5^2+2\cdot 5^n\cdot5^1+2\cdot 5^n}=\\\\ = \frac{11^n \Big(11^2-11^1+1\Big)}{5^n\Big(5^2+2\cdot 5^1+2\Big)}=\\\\ = \frac{11^n \Big(121-11+1\Big)}{5^n\Big(25+10+2\Big)}=\\\\ = \frac{11^n \cdot111}{5^n \cdot37}=\frac{11^n \cdot 3\cdot 37}{5^n \cdot37} ~~\text{Se simplifica cu 37 pentru oricare }~n \in N [/tex]



Alte întrebări interesante