16. Aflati valoarea de adevăr a propozitiei: ,,numărul natural de forma n × (n + 5 ) + 7 este prim, oricare ar fin E IN“. 17. Aflați numerele naturale prime de două cifre, apoi de trei cifre, care au produsul cifrelor 3.
Răspunsuri la întrebare
16.
Enunturile de tipul "oricare ar fi n exista proprietatea p" se demonstreaza a fi false gasind un numar de forma data care nu are proprietatea respectiva.
Altfel spus, incercam sa gasim un numar pentru care n(n+5)+7 NU este prim.
Incercam primele valorile de la 0 la 5 pentru n :
valoarea lui n -> valoarea expresiei
0 -> 7
1 -> 13
2 -> 21
3 -> 31
4 -> 43
5 -> 57
Observam ca pentru n=2 expresia data are valoarea 21 care NU este un numar prim (21=7*3)
Deci propozitia e falsa.
7. Sa ne gandim putin.
Daca cel putin una din cifrele unui numar este 0 atunci produsul cifrelor este 0. Noi avem nevoie de 3, deci orice numar care contine 0 nu este bun.
Daca cifrele sunt diferite de 0 atunci produsul cifrelor este cel putin egal cu cea mai mare cifra. Deci cea mai mare cifra care poate fi in numarul cautat este 3. Numarul nostru e format maxim din cifrele 1,2 sau 3
Daca una din cifre este 2 atunci produsul va fi un numar par. Numarul 3 nu e par, in concluzie numarul nostru nu poate avea o cifra egala cu 2.
Daca cifra 3 apare de mai multe ori atunci produsul va fi mai mare decat 3. Astfel numarul nostru are in componenta sa cifra 3 o singura data.
Singurele cifre disponibile raman 1 si 3.
Numerele naturale prime de 2 cifre al caror produs este 3 :
13
31
Numerele naturale prime de 3 cifre al caror produs este 3:
113
131
311
Toate numerele generate sunt prime
"Scuze, ceva nu a mers bine. Incearca din nou."