Matematică, întrebare adresată de ExerciseTerminator, 8 ani în urmă

18. Câte numere de forma abcd verifică relația abc = d0+c la puterea b?
A. 4
B. 5
C. 6
D. 8


VA ROGGG DAU FUNDA​

Răspunsuri la întrebare

Răspuns de pav38
38

Răspuns: 6 numere

\color{DarkBlue} \boxed{\boxed{\bf \overline{abcd}~\in \bigg\{5928, 2531, 5452, 1351, 2362,7391 \bigg\} }}

Explicație pas cu pas:                                                                              

\bf \overline{abcd} = ???

\bf a,b,c,d - cifre

\bf a\neq 0

\bf \overline{abc}= \overline{d0}+c^{b}

\bf \overline{abcd}= \overline{abc}\cdot 10+d

\bf Inlocuim~pe~ \overline{abc}~si~vom~avea: \overline{abcd}= (\overline{d0}+c^{b})\cdot 10+d

\bf \overline{abcd}= \overline{d00}+10c^{b}+d

\text{\underline{\it Descompunem in baza 10}}

\bf 1000a +100b+10c+d=\overline{d00}+10c^{b}+d

\bf 1000a +100b+10c= \overline{d00}+10c^{b}+d-d

\bf 1000a +100b+10c= \overline{d00}+10c^{b}

\bf 1000a +100b+10c= 100d+10c^{b}~~\bigg|:10

\bf 100a +10b+c= 10d+c^{b}

\bf c^{b} =100a +10b+c- 10d

\bf c^{b} =100a +10\cdot(b-d) +c

\it~~~

\bf c^{b}~ va~ fi~ un~ nr.~ format~ din~ 3~ cifre~care~adunat~ cu~\overline{d0} = nr.~ de~ 4~ cifre\it~~~\text{\bf De acum dai valori lui c si b a.i.}\bf~c^{b}~sa~fie~un~nr. ~de~ 3~ cifre\text{\bf Nu voi lua toate cazurile care nu convin ca e foarte mult de scris}

\it~~~          

\bf \star~~ Daca~ c^{b} = 2^{8} = 256\implies 256=100a +80+2-10d

\bf \implies 174 = 100a -10d \implies 87 = 50-5d~~Nu ~convine   \it~~~~

\bf \star~~ Daca~ c^{b} = 2^{9} = 512\implies 512=100a +90+2-10d

\bf 420=100a -10d\implies d = 10a-42\implies a= 5; d =8;c =2;b=9

\boxed{\bf  \overline{abcd} = 5928~~solutie}

\it~~~

\bf \star~~ Daca~ c^{b} = 3^{5} = 243\implies 243=100a +50+3-10d

\bf \implies 190=100a -10d \implies d = 10a- 19\implies a =2; b=5;c=3;d=1

\boxed{\bf  \overline{abcd} = 2531~~solutie}

\it~~~~~~~~~~~

\bf \star~~ Daca~ c^{b} = 5^{3} = 125\implies 125=100a +30+5-10d

\bf\implies 90=100a -10d\implies d=10-9\implies a=1;b=3;c=5;d=1

\boxed{\bf \overline{abcd} = 1351~~solutie}

\it~~~

\bf \star~~ Daca~ c^{b} = 5^{4} = 625\implies 125=100a +40+5-10d\implies

\bf\implies 580=100a -10d\implies d=10a-58\implies a=5;b=4;c=5;d=2

\boxed{\bf \overline{abcd} = 5452~~solutie}

\it~~~~

\bf \star~~ Daca~ c^{b} = 6^{3} = 216\implies 216=100a +30+6-10d\implies

\bf \implies 180=100a -10d\implies d = 10a -18\implies a=2;b=3;c=6;d=2

\boxed{\bf \overline{abcd} = 2362~~solutie}

\it~~

\bf \star~~ Daca~ c^{b} = 9^{3} = 7292\implies 729=100a +30+9-10d \implies

\bf \implies 690=100a -10d\implies d = 10a -69\implies a=7;b=3;c=9;d=1

\boxed{\bf \overline{abcd} = 7391~~solutie}

\text{\bf Din cazurile analizate avem:}

\color{DarkBlue} \boxed{\boxed{~\bf \overline{abcd}~\in \bigg\{5928, 2531, 5452, 1351, 2362,7391 \bigg\} }}

\text{\bf PS: Daca esti pe telefon te rog sa glisezi spre dreapta pentru a vedea}

\text{\bf rezolvarea completa}

==pav38==

Alte întrebări interesante