2+4+6+...+18+20 suma lui gauss
11+22+33+...+110+121
111+222+333+...+999
5+10+15+...+845+850
Răspunsuri la întrebare
Explicație pas cu pas:
2× ( 1 + 2 + 3 +.... + 10) = (2× 10×11) / 2= 10×11 =
11 × ( 1 + 2 + 3 +...+ 10 + 11) = 11 × ( 11 × 12) / 2 =
111 × ( 1 + 2 + 3 +... + 9) = 111 × 9 ×10 /2 =
5× ( 1 + 2 + 3 +... + 169 + 170) = 5 × 170 × 171 / 2 =
Răspuns:
Explicație pas cu pas:
2+4+6+......+18+20 =
→ scriu fiecare termen al sumei ca produs de 2 factori, unul fiind 2
= 2×1+2×2+2×3+.....+2×9+2×10=
→ îl dau factor comun pe 2
= 2× (1+2+3+......+9+10) =
= 2 × 10 × ( 1+10) : 2 =
= 10 ×11 =
= 110
________________________
11+22+33+.....+110+121 =
=11×1+11×2+11×3 + ......+ 11×10 + 11×11 =
= 11 × ( 1+2+3+......+10+11) =
= 11 × 11 × (1+11) : 2 =
= 121 × 12 : 2 =
= 121 × 6 =
= 726
______________________
111 + 222 + 333 + ....... + 999 =
= 111 ×1 + 111×2 + 111×3 + ......+ 111×9 =
= 111 × ( 1+2+3+.....+9) =
= 111 × 9 × (1+9) : 2 =
= 999 × 10 : 2 =
= 9990 : 2 =
= 4995
___________________________________________________
5 + 10 + 15 + ....... + 845 + 850 =
= 5×1 + 5×2 + 5×3 + ........+ 5×169 + 5×170 =
= 5 × ( 1+2+3+......+ 169 + 170) =
= 5 × 170 × (1+170) : 2 =
= 850 × 171 : 2 =
= 145 350 : 2 =
= 72 675