20 Rezolvați prin metoda substituției următoarele sisteme de ecuații:
Răspunsuri la întrebare
a) {2x + 3y = 5 + 2y {x = 5/2 - 1/2y
{4x + 2y = 7 + x {4x + 2y = 7 + x
4(5/2 - 1/2y) + 2y = 7 + 5/2 - 1/2y
10 = 19/2 - 1/2y
20 = 19 - y
y = 19 - 20 = -1
x = 5/2 - 1/2y = 5/2 - 1/2 × (-1) = 5/2 + 1/2× 1
x = 5/2 + 1/2 = 6/2 = 3
___________________________
b) {3(x - 1) + y = -5 {y = -2 - 3x
{2x + 2(y + 1) = 6 {2x + 2(y + 1) = 6
2x + 2 × (-2 - 3x + 1) = 6
2x - 2 - 6x = 6
-4x - 2 = 6
-4x = 6 + 2
-4x = 8
x = 8 : (-4) = -2
y = -2 - 3x = - 2 - 3 × (-2)= - 2 + 6 = 4
___________________________
c) {x + 2 = 16 - 4y {x + 2 = 16 - 4y
{-3x = 4y - 34 {4y = -34 - 3x
x + 2 = 16 - (34 - 3x)
x + 2 = -18 + 3x
x - 3x = -18 - 2
-2x = -20
x = -20 : (-2) = 10
4y = -34 - 3x
4y = -34 - 3 × 10
4y = 4
y = 4 : 4 = 1
____________________________
d) {4(x + 5) - 2 = 5(y + 3) {4(x + 5) - 2 = 5(y + 3)
{-x + 2(y + 4) = 11 {x = - 3 + 2y
4(-3 + 2y + 5) - 2 = 5(y + 3)
8 + 8y - 2 = 5y + 15
6 + 8y = 5y + 15
8y - 5y = 15 - 6
3y = 9
y = 9 : 3 = 3
x = - 3 + 2y = -3 + 2 × 3 = -3 + 6 = 3
____________________________
e) {2(x + 4) = -3(y - 5) {2x + 8 = -3y + 15
{x = 2(y + 1) - 16 {x = 2y - 14
2(2y - 14) + 8 = -3y + 15
4y - 20 = -3y + 15
4y + 3y = 15 + 20
7y = 35
y = 35 : 7 = 5
x = 2y - 14 = 2 × 5 - 14 = 10 - 14 = -4
____________________________
f) {2y = 4 - 3x
{-3x = y + 1
2y = 4 + y + 1
2y = 5 + y
2 y - y = 5
y = 5
-3x = y + 1
-3x = 5 + 1
-3x = 6
x = 6 : (-3) = -2