3 Calculează: a) 11 000 + 12 000 + 13 000 +.......+ 39 000 + 40 000 = = b) 13 000 + 18 000 + 23 000 +....... + 53 000 + 58 000 =
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
a) 11 000 + 12 000 + 13 000 + ... + 39 000 + 40 000 = ?
S = 11 000 + 12 000 + 13 000 + ... + 39 000 + 40 000 (1)
Scriem suma ,,pe dos":
S = 40 000 + 39 000 + 38 000 + ... + 12 000 + 11 000 (2)
Adunăm relațiile (1) și (2):
2S = (11 000 + 40 000) + (12 000 + 39 000) + (13 000 + 38 000) + ... + (39 000 + 12 000) + (40 000 + 11 000)
2S = 51 000 + 51 000 + 51 000 + ... + 51 000 + 51 000
Trebuie să verificăm de câte ori apare 51 000; pentru aceasta, vom verifica câți termeni are suma S, folosind formula:
- Am notat cu N cel mai mare număr din sumă (în acest caz, 40 000);
- Am notat cu n cel mai mic număr din sumă (în acest caz, 11 000);
- Am notat cu p pasul, adică din cât în cât se succed numerele (în acest caz, 1 000).
Astfel, 51 000 apare de (40 000 - 11 000) ÷ 1 000 + 1 = 29 000 ÷ 1 000 + 1 = 29 + 1 = 30 de ori.
Așadar:
b) Procedăm la fel ca la subpunctul a):
S = 13 000 + 18 000 + 23 000 + ... + 53 000 + 58 000
S = 58 000 + 53 000 + 48 000 + ... + 18 000 + 13 000
⇒ 2S = (13 000 + 58 000) + (18 000 + 53 000) + (23 000 + 48 000) + ... +
(53 000 + 18 000) + (58 000 + 13 000)
⇒ 2S = 71 000 + 71 000 + 71 000 + ... + 71 000 + 71 000
71 000 apare de (58 000 - 13 000) ÷ 5 000 + 1 = 45 000 ÷ 5 000 + 1 = 9 + 1 = 10 de ori.
Așadar: