Matematică, întrebare adresată de danait, 8 ani în urmă

4. Fie P(x) un polinom de gradul n .... continuarea în imagine.


Mulțumesc!

Anexe:

Răspunsuri la întrebare

Răspuns de Rayzen
3

P(x) = \dfrac{a}{n!}(x-c)^n \\ \\\text{Logaritmam:} \\ \\ \ln\Big(P(x)\Big) = \ln\Big(\dfrac{a}{n!}\cdot (x-c)^n\Big) \\ \\ \ln\Big(P(x)\Big) = \ln \Big(\dfrac{a}{n!}\Big)+\ln (x-c)^n \\ \\ \ln\Big(P(x)\Big) = \ln \Big(\dfrac{a}{n!}\Big)+n\cdot \ln(x-c)\\ \\ \text{Derivam: }\\ \\ \ln\Big(P(x)\Big)' = 0+n\cdot \dfrac{(x-c)'}{x-c} \\ \\ \dfrac{P'(x)}{P(x)} = \dfrac{n}{x-c} \\ \\ \dfrac{P(x)}{P'(x)} = \dfrac{x-c}{n}\Rightarrow P(x) = \Big(\dfrac{x-c}{n}\Big)\cdot P'(x)+0\\ \\ \Rightarrow P(x) \text{ se divide prin }P'(x)


OmuBacovian: Trebuie sa demonstrezi Ca P(x) are aceasta forma , nu sa pornesti de la premisa ca stii cine-i P(x)
OmuBacovian: Astfel spus, trebuie sa demonstrezi => , nu <=
Alte întrebări interesante