Matematică, întrebare adresată de harvard, 8 ani în urmă

9. Calculaţi media geometrică a numerelor:
a) x=|473 – 7 |(164 +377) și y=|377 – 8|(749+423);
b) x=|475 -9|(512 + V49) și y=17-573|(181+45).

Răspunsuri la întrebare

Răspuns de dariusbarbu
14

Răspuns:

  • $\mathbf{a)Mg =  \sqrt{92282897088} }$
  • $\mathbf{b) \: Mg =  \sqrt{30390406224} }$

Explicație pas cu pas:

\boxed{Mg =  \sqrt{x \times y} }

$\mathbf{a) \: x =  |473 - 7|(164 + 377)  = 466 \times 541 = 252106  }$

$\mathbf{y =  |377 - 8| (749 + 423) = 369 \times 992 = 366048}$

Modulul unui numar este intotdeauna pozitiv !!!!!!!

$\mathbf{Mg =  {?} }$

$\mathbf{Mg =  \sqrt{252106 \times 366048 =  \sqrt{92282897088} } }$

$\mathbf{b) \:  x =  |475 - 9| (512 + \sqrt{49} ) =  |466|   \times (512 + 7) = 466 \times 519 = 241854}$

$\mathbf{y =  |17 - 573| (181 + 45) = | - 556| \times 226 = 556 \times 226 = 125656  }$

$\mathbf{Mg =  \sqrt{241854 \times 125656 =  \sqrt{30390406224} } }$

Bafta!


harvard: Multumesc frumos
Alte întrebări interesante