Matematică, întrebare adresată de DariaX2000, 8 ani în urmă

A=2^n+2 + 2^n+1 + 2^n ;A este divizibil cu 5
VA IMPLOR​


ModFriendly: In fata ultimului termen era - sau +?

Răspunsuri la întrebare

Răspuns de pav38
11

Răspuns: Demonstratia mai jos

Explicație pas cu pas:

Salutare!

\bf A = 2^{n+2}+2^{n+1} -  2^{n}

\bf A = 2^{n}\cdot(2^{n+2-n}+2^{n+1-n} -  2^{n-n})

\bf A = 2^{n}\cdot(2^{2}+2^{1} -  2^{0})

\bf A = 2^{n}\cdot( 4+2 -  1)

\bf A = 2^{n}\cdot 5 \implies A\:\: \vdots\:\:5

⊱─────✧pav38✧─────⊰


DariaX2000: merci mult
pav38: Cu mare drag!
Alte întrebări interesante