a*b=a+b+2020 aflati a si b
Răspunsuri la întrebare
ab=a+b+2020
ab-a=b+2020
a(b-1)=b+2020
a=(b+2020)/(b-1)=(b-1)/(b-1)+2021/(b-1)=1+2021/(b-1)
=>b-1|2021
D2021={-2021,-43,-47,-1,1,43,47,2021}
b-1=-2021=>b=-2020; b-1=-47 => b=-46
b=-42; b=0; b=2; b=44; b=48; b=2022
Pentru: b=-2020=>a=0
b=-46=>a=-42
b=-42=>a=-46
b=0=>a=-2020
b=2=>a=2022
b=44=>a=48
b=48=>a=44
b=2022=>a=2
( am inlocuit in a=(b+2020)/(b-1) )
a×b = a+b + 2020
⇔ a×b - a - b = 2020
⇔ b(a-1) - a = 2020
⇔ b(a-1) - a+1 = 2021
⇔ b(a-1) - (a-1) = 2021
⇔ (a-1)(b-1) = 2021
2021 = 1×43×47
⇒ 43×47 = 2021 ⇒ {a = 44, b = 48}
⇔ (-43)×(-47) = 2021 ⇒ {a = -42, b = -46}
⇔ 47×43 = 2021 ⇒ {a = 48, b = 44}
⇔ (-47)×(-43) = 2021 ⇒ {a = -46, b = -42}
⇔ 2021×1 = 2021 ⇒ {a = 2022, b = 2}
⇔ (-2021)×(-1) = 2021 ⇒ {a = -2020, b = 0}
⇔ 1×2021 = 2021 ⇒ {a = 2, b = 2022}
⇔ (-1)×(-2021) = 2021 ⇒ {a = 0, b = -2020}