A10/171 Sa se rezolve sistemele de ecuatii folosind notatia de tipul x+y=s, xy=p.
d)2x^2+3xy+2y^2=4
x+y-xy=1
Răspunsuri la întrebare
Metoda simplă:
2x²+3xy+2y² = 4
x+y-xy = 1
x+y-xy = 1 => x+y(1-x) = 1 =>
=> y(1-x) = 1-x => y = 1 când x ≠ 1.
=> 2x²+3xy+2y² = 4
=> y = 1
=> 2x²+3x+2 = 4
=> 2x²+3x-2 = 0
Delta = 9 + 16 = 25
=> x1,2 = (-3±5)/4
=> x1 = -2, x2 = 1/2
=> (x,y) = { ( -2 ; 1) , (1/2, 1) }
Dar sistemul e simetric =>
=> (x,y) = { (-2 ; 1), (1; -2), (1/2; 1), (1, 1/2) }
Metoda cu s si p:
2x²+3xy+2y² = 4
x+y-xy = 1
x²+2xy+y²+x²+2xy+y² - xy = 4 =>
=>(x+y)²+(x+y)² - xy = 4
2(x+y)² - xy = 4
x+y - xy = 1
x+y = s
xy = p
=> 2s²-p = 4
=> s - p = 1
(scadem)
2s² - s = 3 => 2s² - s - 3 = 0
Delta = 1+24 = 25 => s1,2 = (1±5)/4
=> s1 = -1, s2 = 3/2
=> -1 - p1 = 1 => p1 = -2
=> 3/2 - p2 = 1 => p2 = 1/2
(1) s1 = -1, p1 = -2
=> t²-(-1)t-2 = 0 => t²+t-2 = 0
Delta = 1+8 = 9 => t1,2 = (-1±3)/2
=> t1 = -2, t2 = 1
(2) s2 = 3/2, p2 = 1/2
=> t²-(3/2)t+1/2 = 0 =>
= 2t²-3t+1 = 0
Delta = 9-8 = 1 => t1,2 = (3±1)/4 =>
=> t1 = 1/2, t2 = 1
=> (x,y) = { (-2 ; 1), (1; -2), (1/2; 1), (1, 1/2) }