ABCD este un paralelogram cu m(<BDC) = 30° şi AC perpendicular pe AB. Să se determine aria
paralelogramului ştiind că BD = 1,6 dm.
Răspunsuri la întrebare
Răspuns de
2
Am mai gasit o data problema asta si am rezolvat-o asa:
CO=CD/2 (cateta opusa unghiului de 30 grade este 1/2 din ipotenuza)⇒CA=DC⇒
⇒m(<CDA)=45⇒ΔDCA este dreptunghic isoscel⇒DC=DA/√2 (cu o functie trigonometrica sau cu T. lui Pitagora).

CO=CD/2 (cateta opusa unghiului de 30 grade este 1/2 din ipotenuza)⇒CA=DC⇒
⇒m(<CDA)=45⇒ΔDCA este dreptunghic isoscel⇒DC=DA/√2 (cu o functie trigonometrica sau cu T. lui Pitagora).
Alte întrebări interesante
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Engleza,
9 ani în urmă
Limba română,
10 ani în urmă
Matematică,
10 ani în urmă
Matematică,
10 ani în urmă