Afla numarul n ∈N* astfel incat:1/1·2+1/2·3+...+1/n(n+1)=100/101
Răspunsuri la întrebare
Răspuns de
1
[tex] \frac{1}{1\cdot 2} = \frac{1}{1} - \frac{1}{2} \\
\frac{1}{2\cdot 3} = \frac{1}{2} - \frac{1}{3} \\
\frac{1}{n\cdot (n+1)} = \frac{1}{n} - \frac{1}{n+1} \\
\frac{1}{1\cdot 2}+ \frac{1}{2\cdot 3}+..+ \frac{1}{n\cdot( n+1)} =\\
=\frac{1}{1} - \frac{1}{2}+\frac{1}{2} - \frac{1}{3}+...+\frac{1}{n} - \frac{1}{n+1}=1 - \frac{1}{n+1}\\
1 - \frac{1}{n+1}= \frac{100}{101} \\
\frac{1}{n+1}=1-\frac{100}{101}\\
\frac{1}{n+1}= \frac{1}{101} \\
n+1=101\\
n=100[/tex]
Utilizator anonim:
multumesc
Alte întrebări interesante
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Biologie,
10 ani în urmă
Matematică,
10 ani în urmă