Matematică, întrebare adresată de laura22055, 8 ani în urmă

Aflati media geometrica a numerelor a si b

Anexe:

Răspunsuri la întrebare

Răspuns de CristiSerea
1

Salut!

Media geometrică a două numere este egală cu rădăcina pătrată a produsului acestora.

Pe scurt:

Mg=\sqrt{a*b}

Înlocuim și obținem:

Mg=\sqrt{\sqrt{3-2\sqrt{2} }*\sqrt{3+2\sqrt{2} }  } \\Mg=\sqrt{\sqrt{(3-2\sqrt{2})(3+2\sqrt{2)}  } } \\Mg=\sqrt{\sqrt{9-6\sqrt{2}+6\sqrt{2}-8 } }\\\\Mg=\sqrt{\sqrt{9-8} } \\Mg=\sqrt{\sqrt{1} } \\Mg=\sqrt{1} \\Mg=1

Sau puteam observa o formulă de calcul prescurtat:

(a+b)(a-b)=a^{2} -b^{2} \\

Înlocuim și obținem același rezultat:

Mg=\sqrt{\sqrt{3^{2}-(2\sqrt{2})^{2}  } } \\Mg=\sqrt{\sqrt{9-8} } \\Mg=\sqrt{\sqrt{1} } \\Mg=\sqrt{1} \\Mg=1

Sper că ai înțeles!

Alte întrebări interesante