Matematică, întrebare adresată de Dragon35, 9 ani în urmă

Aflați numărul natural x, astfel încât : 11+12+...+100=5(1000x1)


renatemambouko: verifica daca e scris corect... ultima din stanga e +100 sau ar trebui sa fie 1000
renatemambouko: sau in dreapta ai prea multe zerouri
Dragon35: 11+12+...+100=5(1000x-1
renatemambouko: 11+12+...+100=11+12+...+100=
=1+2+3+...+100-(1+2+....+10)=100×101/2-10×11/2= =50×101-55=5050-55=4995
nr 4995 nu se poate scrie sub forma 5(1000x1)
Dragon35: rapid te rog
Dragon35: mersi
renatemambouko: 5(1000x-1) =4995
1000x-1 =4995:5
1000x-1 =999
1000x =999+1
1000x=1000
x=1

Răspunsuri la întrebare

Răspuns de renatemambouko
2
11+12+...+100=1+2+3+...+100-(1+2+....+10)=
=100×101/2-10×11/2=50×101-55=5050-55=4995
 5(1000x-1) =4995
1000x-1 =4995:5
1000x-1 =999
1000x =999+1
1000x=1000
x=1


Răspuns de Utilizator anonim
2
\displaystyle 11+12+...+100=5(1000x-1)  \\  \\ 11+12+...+100 \\ \\ 100=11+(n-1) \cdot 1 \Rightarrow 100=11+n-1 \Rightarrow n=100-11+1 \Rightarrow \\  \\ \Rightarrow n=90 \\  \\ S_{90}= \frac{2 \cdot 11+(90-1) \cdot 1}{2} \cdot 90 \\ \\ S_{90}= (22+89 \cdot 1) \cdot 45 \\ \\ S_{90}=(22+89) \cdot 45 \\ \\ S_{90}=111 \cdot 45 \\ \\ S_{90}=4995 \\  \\ 11+12+...+100=5(1000x-1) \\ \\ 4995=5(1000x-1) \\ \\ 4995=5000x-5 \\  \\ 5000x=4995+5 \\  \\ 5000x=5000 \\  \\ x= \frac{5000}{5000} \Rightarrow \boxed{x=1}
Alte întrebări interesante