Aflați numerele x, y și z știind ca sunt invers proportionale cu 0,5; 0,(3) și 0,1(6) , iar 3x+4y-2z = 30.
Răspunsuri la întrebare
Răspuns de
523
x,y,z i.p. 0,5 0,(3) si 0,1(6)
Primul pas este sa transformam numerele din fractii zecimale in fractii ordinare:
0,5 = 5/10 = 1/2
0,(3) = 3/9 = 1/3
0,1(6) = 16-1/90 = 15/90 = 1/6
x,y,z i.p. cu 1/2 , 1/3 , 1/6
le inmultim pe primul din stanga cu primul din dreapta si asa mai departe si le egalam cu o constanta ( o litera, se foloseste " p " ) .
x * 1/2 = y* 1/3 = z*1/6 = p
Le luam pe fiecare in parte si le egalam cu p si vom exprima numerele x,y,z in functie de "p "
x* 1/2 = p => x= 2* p
y* 1/3 =p = > y= 3*p
z*1/6 =p => z= 6*p
Folosindu-ne de aceste relatii rescriem relatia din cerinta:
3x+4y-2z=30
3*2p + 4*3p -2*6p =30
6p+12p-12p=30
6p=30
p=5
Prin urmare, x= 2*5=10, y= 3*5=15, si z = 6*5=30.
Sper ca te-am ajutat ,
Spor!
isabella9411:
ms și eu mult!
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Engleza,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă