Matematică, întrebare adresată de Utilizator anonim, 9 ani în urmă

Aflati produsul numerelor reale pozitive a si b stiind ca

2a+3b = 3√15

4a²+9b² = 87

Răspunsuri la întrebare

Răspuns de icecon2005
0
2a+3b=3√15 ridicata la patrat=  (2a+3b)²=3²·15⇒4a²+9b²+2·2a·3b=135
dar 4a²+9b²=87
87+12ab=135
12ab=135-87
12ab=48
ab=4
a=4/b
2a+3b=3√15
2·4/b+3b=3√15⇒8+3b²=3b√15
3b²-3b√15+8=0
Δ=b²-4ac=9·15-4·8·3
Δ=135-96=39
b₁=(3√15-√39)/6=(3·√3√5-√3√13)/6=√3(3√5-√13)/6
b₂=(3√15+√39)/6=(3·√3√5+√3√13)/6=√3(3√5+√13)/6
a₁=4/(√3(3√5-√13)/6)
a₂=4/(√3(3√5+√13)/6)
a₁×b₁=(4/(√3(3√5-√13)/6)]×√3(3√5-√13)/6=4
a₂×b₂=(4/(√3(3√5+√13)/6)]×√3(3√5+√13)/6=4

Utilizator anonim: E gresit cand ai ridicat la patrat nu e 12a patrat e 12ab
Răspuns de danaonest
0
Sper sa te ajute. Succes
Anexe:

danaonest: Uitasem finalul (produsul) :)
danaonest: Deja îl obținusem. Scuze
Alte întrebări interesante