Aflati ratia si primul termen al progresiei geometrice (bn)n>= 1 stiind ca b1-b5=15 si b1-b3=7
Răspunsuri la întrebare
Răspuns:
b₁ = -49 ; q₁,₂ = ± 2√14 /7
Explicație pas cu pas:
{b1-b5=15
{b1-b3=7 <=>
-----
{b₁-b₁q⁴ = 15
{b₁-b₁q² = 7 <=>
-----
{b₁(1-q⁴) = 15
{b₁(1-q²) = 7 <=>
-------
{{b₁(1-q²)(1+q²) = 15 (1)
{b₁(1-q²) = 7 => (2)
din (1):(2) => 1+q² = 15/7 =>
q² = (15-7)/7 = 8/7 = 56/49 =>
q₁,₂ = ± 2√14 /7
q₁ = -2√14 /7
b₁ = 7/(1-q²) = 7/(1-8/7) =7/ (-1/7) = -49
b₁ = -49
b₂ = -49 · (-2√14/7) = 14√14
b₃ = 14√14 · (-2√14/7) = - 28·14/7 = -56
b₄ = -56 · (-2√14/7) = 112√14 /7 = 16√14
b₅ = 16√14 · (-2√14/7) = -32·14/7 = -64
b₁-b₅ = -49+64 = 15
b₁-b₃ = -49+56 = 7 , corect
-------------------------------------
q₂ = 2√14 /7 ; b₁ = -49 =>
b₂ = -49 · 2√14 /7 = -14√14
b₃ = -14√14·2√14 /7 = -56
b₄ = -56· 2√14 /7 = -16√14
b₅ = -16√14 · 2√14 /7 = -64
b₁-b₅ = -49+64 = 15
b₁-b₃ = -49+56 = 7 , corect