Aflati ultima cifra a nr:
A) 3^2019+5^2020+1^2021
B)2^2019+6^2020+2019^0
C) 4^2019+7^2020+8^2021_9^2022
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
A)
3^1 se termina in 3
3^2 se termina in 9
3^3 se termina in 7
3^4 se termina in 1
3^5 se termina in 3
2019 : 4 = 504 rest 3
3^2019 se termina in 7
5 la orice putere se termina in 5
1 la orice putere = 1
numarul se termina in 7 + 5 + 1, adica in 3
______________
B)2^2019+6^2020+2019^0
2^1 se termina in 2
2^2 se termina in 4
2^3 se termina in 8
2^4 se termina in 6
2^5 se termina in 2
2019 : 4 = 504 rest 3
2^2019 se termina in 8
6 la orice putere se termina in 6
2019^0 = 1
Numarul se termina in 8 + 6 + 1, adica in 5
____________
C) 4^2019+7^2020+8^2021 - 9^2022
4^1 se termina in 4
4^2 se termina in 6
4^3 se termina in 4
2019 : 2 = 1009 rest 1
4^2019 se termina in 4
7^1 se termina in 7
7^2 se termina in 9
7^3 se termina in 3
7^4 se termina in 1
7^5 se termina in 7
2020 : 4 = 505 rest 0
7^2020 se termina in 1
8^1 se termina in 8
8^2 se termina in 4
8^3 se termina in 2
8^4 se termina in 6
8^5 se termina in 8
2021 : 4 = 505 rest 1
8^2021 se termina in 8
9^1 se termina in 9
9^2 se termina in 1
9^3 se termina in 9
2022 : 2 = 1011 rest 0
9^2022 se termina in 9
Numarul se termina in 4 + 1 + 8 - 9 , adica in 4