Matematică, întrebare adresată de Utilizator anonim, 9 ani în urmă

ajutatima va rog mult clik pe poza

Anexe:

Răspunsuri la întrebare

Răspuns de tcostel
1
       
 6a)\\ 11x-44\ \textless \ 0 \\ 11x\ \textless \ 44 \\ x\ \textless \ \frac{44}{11} \\ x\ \textless \ 4 \\ x\in \{-1;\;0;\;1;\;2;\;3\} \\ \\ 6b) \\ -7+6x\ \textless \ 4x+15 \\ 6x-4x\ \textless \ 15+7 \\ 2x\ \textless \ 22 \\ x\ \textless \ \frac{22}{2} \\ x\ \textless \ 11 \\ x \in \{-1;\;0;\;1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9;\;10\}

6c) \\ x-17 \geq 4x-5 \\ x-4x \geq -5+17 \\ -3x \geq 12 \;\;\;\;\; |*(-1)\\ 3x \leq -12 \\ x \leq \frac{-12}{3} \\ x \leq -4 \;si\;x\ \textgreater \ -1\;=\ \textgreater \  \;x \in \Phi

6d) \\ 2x\ \textgreater \ 3(x-1) \\ 2x\ \textgreater \ 3x-3 \\ 2x-3x\ \textgreater \ -3 \\ -x\ \textgreater \ -3\;\;\;\;\;|*(-1) \\ x\ \textless \ 3 \; si \; x \geq -1 \\ x \in \{-1;\;0;\;1;\;2 \}  \\ \\  6e) \\ 2x-6+3x \leq 14 \\ 5x \leq 14 + 6 \\  2x-6+3x \leq 14 \\ 5x \leq 20 \\x  \leq  \frac{20}{5}   \\ x \leq 4  \;\;\;=\ \textgreater \ \;\;\;x \in \{-1; \;0;\;1;\;2;\;3;\;4\}

6f) \\ 8x+20\ \textless \ 3x \\ 8x-3x\ \textless \ -20 \\ 5x\ \textless \ -20 \\ x\ \textless \  \frac{-20}{5}  \\ x\ \textless \ -4\;\;\;si\;\;\;x \geq -1 \\ =\ \textgreater \ x \in \Phi

6g) \\ 3(x-3) \leq 4(2x+1)-3 \\ 3x-9 \leq 8x+4-3 \\ 3x-8x  \leq 4-3+9 \\ -5x \leq 10 \\ x \leq  \frac{10}{5}  \\ x \leq 2\\  x \in \{-1;\;0;\;1;\;2\}

6h) \\ (5- \sqrt{7})x+5 \leq \sqrt{7} \\  (5- \sqrt{7})x \leq \sqrt{7}-5 \\ (5- \sqrt{7})x \leq -(5-\sqrt{7}) \\    x \leq  \frac{-(5-\sqrt{7})}{(5- \sqrt{7})}  \\ x \leq -1 \;\;\;si\;\;\;x \geq -1 \\ x \in\{-1\} \;\;=\ \textgreater \ \;\;x=-1

6i) \\  \sqrt{3} x+4 \leq 1-2\sqrt{3} x \\ \sqrt{3}x+ 2\sqrt{3} x \leq 1-4 \\   3\sqrt{3}x \leq -3 \\ x \leq  \frac{-3 }{3\sqrt{3}}  \\ x \leq -\frac{1 }{\sqrt{3}} \\ x \leq -\frac{\sqrt{3} }{3} \\ x \leq -0,577 \;\;\;si \;\;\; x \geq -1\;\;\; si \;\;\; x \in Z \\ =\ \textgreater \ \;\;\;x \in \{-1\}\;\;\;=\ \textgreater \ \;\;x=-1



Alte întrebări interesante