Matematică, întrebare adresată de valimacasoi1, 9 ani în urmă

ajutorla inductiile matematice,P(n)=1/1.3+1/3.5+...+1/(2n-1)(2n+1)=n/2n+1

Răspunsuri la întrebare

Răspuns de uionutalin
19
P(n): \frac{1}{1*3}+ \frac{1}{3*5} + ... +  \frac{1}{(2n-1)(2n+1)}= \frac{n}{2n+1}, ~n \geq 1   \\  \\ I)~Verificarea: \\  \\ P(1):  \frac{1}{1*3} =  \frac{1}{2*1+1} ~~~-\ \textgreater \ ~~~ \frac{1}{3}= \frac{1}{3}~(adevarat) \\  \\  \\ II) Demonstratia: \\  \\ P(k)~-\ \textgreater \ ~P(k+1) \\  \\ P(k):  \frac{1}{1*3}+ \frac{1}{3*5}+...+ \frac{1}{(2k-1)(2k+1)}= \frac{k}{2k+1}~(o~presupunem~ca~fiind~ \\ adevarata)
P(k+1): \frac{1}{1*3}+ \frac{1}{3*5}+...+ \frac{1}{(2k-1)(2k+1)}+ \frac{1}{[2(k+1)-1][2(k+1)+1]}= \\  \\ = \frac{k+1}{2(k+1)+1}~(de~la~\frac{1}{1*3}~pana~la~ \frac{1}{(2k-1)(2k+1)}~este~chiar~P(k)~deci~putem~ \\  \\ inlocui~astfel)  \\  \\ P(k+1):  \frac{k}{2k+1}  +  \frac{1}{(2k+2-1)(2k+2+1)}=  \frac{k+1}{2k+2+1} \\  \\ P(k+1): \frac{k}{2k+1}+ \frac{1}{(2k+1)(2k+3)}= \frac{k+1}{2k+3}~(numitorul~comun~e~ \\ \\  (2k+1)(2k+3) )  \\  \\ P(k+1):k(2k+3)+1=(k+1)(2k+1) \\  \\ P(k+1): 2k^{2}+3k+1= 2k^{2}+k+2k+1
P(k+1):2k^{2}+3k+1= 2k^{2}+3k+1~(adevarat) \\  \\ Din~I)~si~II) ~-\ \textgreater \  ~ \\  \\ -\ \textgreater \ ~P(n): \frac{1}{1*3}+ \frac{1}{3*5} +...+ \frac{1}{(2n-1)(2n+1)}= \frac{n}{2n+1}~adevarat~ \\  \\ pentru~orice~n \geq 1. \\  \\  \\ Sper~ca~te-am~ajutat!
Alte întrebări interesante