Matematică, întrebare adresată de vanyy1, 9 ani în urmă

ajutorrrrrrrrrrrrrrrrrrrr

Anexe:

Damaya: toate ex?
vanyy1: Da..sau macar cateva

Răspunsuri la întrebare

Răspuns de Damaya
0
1.a) x^2=1
x=√1
x=+/- 1
b) 2x^2= -8
x^2= -4
x= -√4
x= -2

2.34+15(x+3)^2=169
15(x+3)^2=135
(x+3)^2=9
x+3=√9
x+3=3
x=0 sau
x+3= -3
x= -6

3.9+6x+x^2+9-6x+x^2=36
18+2x^2=36
2x^2=18
x^2=9
x=+/- √9
x= +/- 3 deci poate fi soluţia a= -3

4.x^2+x^2+4x+4+x^2+8x+16=12x+32
3x^2+12x+20-12x=32
3x^2+20=32
3x^2=12
x^2=4
x=√4
x=+/- 2

5.9x^2+24x+16=4x^2+4x+1
9x^2-4x^2+24x-4x+16-1=0
5x^2+20x+15=0
delta=b^2-4ac=400-300=100
x1= (-b+√delta)/2a=(-20+10)/10= -10/10= -1
x2= (-b-√delta)/2a=(-20-10)/10= -30/10= -3
Răspuns de abc112
0
1)a) {x}^{2} = 1

x = \pm \sqrt{1}

x = \pm1

b)2 {x}^{2} + 1 = - 7

2 {x}^{2} = 7 + 1

2 {x}^{2} = 8 \: | \div 2

 {x}^{2} = 4

x = \pm \sqrt{4}

x = \pm2

c) {x}^{2} + 2 {x}^{2} = 4 {x}^{2}

 {x}^{2} + 2 {x}^{2} - 4 {x}^{2} = 0

 - {x}^{2} = 0

 {x}^{2} = 0

x = 0

2)34 + 15 {(x + 3)}^{2} = {( - 13)}^{2}

34 + 15( {x}^{2} + 6x + 9) = 169

34 + 15 {x}^{2} + 90x + 135 = 169

15 {x}^{2} + 90x + 34 + 135 - 169 = 0

15 {x}^{2} + 90x + 169 - 169 = 0

15 {x}^{2} + 90x + 0 = 0

15 {x}^{2} + 90x = 0

a = 15

b = 90

c = 0

\Delta = {b}^{2} - 4ac

\Delta = {90}^{2} - 4 \times 15 \times 0

\Delta = 8100>0=>\:\exists\:x_{1}\:\neq\:x_{2}

x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}

x_{1,2}=\frac{-90\pm\sqrt{8100}}{2 \times 15}

x_{1,2}=\frac{-90\pm90}{30}

x_{1}=\frac{-90 + 90}{30}

x_{1}=\frac{0}{30}

x_{1}=0

x_{2}=\frac{-90 - 90}{30}

x_{2}=\frac{-180}{30}

x_{2}= - 6

3) {( 3 + x)}^{2} + {(3 - x)}^{2} = 36

{[ 3+ ( - 3)]}^{2} + {[3 - ( - 3)]}^{2} = 36

 {(3 - 3)}^{2} + {(3 + 3)}^{2} = 36

 {0}^{2} + {6}^{2} = 36

0 + 36 = 36

36 = 36 \: (A)

=>a=-3\:este\:solutie\:a\:ecuatiei

4) {x}^{2} + {(x + 2)}^{2} + {(x + 4)}^{2} = 4(3x + 8)

 {x}^{2} + {x}^{2} + 4x + 4 + {x}^{2} + 8x + 16 = 12x + 32

 {x}^{2} + {x}^{2} + {x}^{2} + 4x + 8x - 12x = 32-16-4

3 {x}^{2} = 12\:|\div3

 {x}^{2} = 4

 x= \pm\:\sqrt{4}

x = \pm\:2

5) {(3x + 4)}^{2} = {(2x + 1)}^{2}

9 {x}^{2} + 24x + 16 = 4 {x}^{2} + 4x + 1

9 {x}^{2} - 4 {x}^{2} + 24x - 4x + 16 - 1 = 0

5 {x}^{2} + 20x + 15 = 0

a = 5

b = 20

c = 15

\Delta = {b}^{2} - 4ac

\Delta = {20}^{2} - 4 \times 5 \times 15

\Delta = 400 - 300

\Delta = 100 > 0 = > \exists \: x_{1} \: \neq \: x_{2}

x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}

x_{1,2}=\frac{-20\pm\sqrt{100}}{2 \times 5}

x_{1,2}=\frac{-20\pm10}{10}

x_{1}=\frac{-20 + 10}{10}

x_{1}=\frac{ - 10}{10}

x_{1}= - 1

x_{2}=\frac{ - 20 - 10}{10}

x_{2}=\frac{ - 30}{10}

x_{2}= - 3

6) {x}^{2} + 6x + 8 = 6 + 4 \sqrt{3}

 {x}^{2} + 6x + 8 - 6 - 4 \sqrt{3} = 0

 {x}^{2} + 6x + 2 - 4 \sqrt{3} = 0

a = 1

b = 6

c = 2 - 4 \sqrt{3}

\Delta = {b}^{2} - 4ac

\Delta = {6}^{2} - 4 \times 1 \times (2 - 4 \sqrt{3} )

\Delta = 36 + 8 - 16 \sqrt{3}

\Delta = 44 - 16 \sqrt{3}>0=>\:\exists \:x_{1}\:\neq\:x_{2}

x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}

x_{1,2}=\frac{-6\pm\sqrt{44 - 16 \sqrt{3} }}{2 \times 1}

x_{1,2}=\frac{-6\pm\sqrt{44 - 16 \sqrt{3} }}{2}

x_{1}=\frac{-6 + \sqrt{44 - 16 \sqrt{3} }}{2}

x_{2}=\frac{-6 - \sqrt{44 - 16 \sqrt{3} }}{2}
Alte întrebări interesante