Matematică, întrebare adresată de Andreea1104, 9 ani în urmă

Am nevoie de ajutor la acest exercitiu

Anexe:

Răspunsuri la întrebare

Răspuns de Rayzen
1
"\bot":\quad x\bot y = \max\{x,y\} \\ "\top": \quad x\top y = \min\{x,y\} \\ \\\bullet $ Distributivitatea\\ operatiei "\bot" $ in raport cu operatia "\top": \\ \\1) $ $a\ \leq \ b\ \leq \ c  \\ a \bot (b\top c) = a\bot\min\{b,c\} = a\bot b = \max\{a,b\} = b \\ a\bot(b\top c) = (a\bot b) \top(a\bot c) =\\ = \max\{a,b\} \top \max\{a,c\} = b \top c = b \\ \\ 2) $ $b~\leq~ a~\leq~c \\ a\bot (b\top c) = a\bot b = a
a\bot (b\top c) = (a\bot b) \top (a\bot c) = a\top c = a \\ \\ 3)$ $ a\ \leq \ c\ \leq \ b \\ a\bot (b\top c) = a\bot c = c \\ a\bot (b\top c) = (a\bot b) \top (a\bot c) =b \top c = c \\ \\ 4) $ $ c\ \leq \ a\ \leq \ b \\ a\bot (b\top c) = a\bot c = a \\ a\bot (b\top c) = (a\bot b) \top (a\bot c) =b\top a = a \\ \\ 5) $ $ c\ \leq \ b\ \leq \ a \\ a\bot (b\top c) = a\bot c = a \\ a\bot (b\top c) = (a\bot b) \top (a\bot c) =a\top a = a \\ \\ 6) $ $ b\ \leq \ c\ \leq \ a \\ a\bot (b\top c) = a\bot b = a \\ a\bot (b\top c) = (a\bot b) \top (a\bot c) =a\top a = a

\Rightarrow $ Operatia "\bot" $ este distributiva \\in raport cu operatia "\top"$ $! \\ \\ \bullet $ Distributivitatea\\ operatiei "\top" $ in raport cu operatia "\bot": \\ \\ 1) $ $ a\ \leq \ b\ \leq \ c \\ a\top(b\bot c) = a \top c = a \\ a\top (b\bot c) = (a\top b)\bot (a\top c) = a\bot a = a \\ \\ 2) $ $b\ \leq \ a\ \leq \ c \\ a\top (b\bot c) = a \top c = a \\ a\top (b\bot c) = (a\top b)\bot (a\top c) =b\bot a = a \\ \\ 3) $ $a\ \leq \ c\ \leq \ b \\ a\top (b\bot c) = a\top b = a \\ a\top (b\bot c) = (a\top b)\bot (a\top c) =a\bot a = a

4) $ $ c\ \leq \ a\ \leq \ b \\ a\top (b\bot c) = a\top b = a \\ a\top (b\bot c) = (a\top b)\bot (a\top c) =a\bot c = a \\ \\ 5)$ $ c\ \leq \ b\ \leq \ a \\ a\top(b\bot c) = a\top b = b \\ a\top (b\bot c) = (a\top b)\bot (a\top c) =b\bot c = b \\ \\ 6) $ $ b\ \leq \ c\ \leq \ a \\ a\top(b\bot c) = a \top c = c \\ a\top (b\bot c) = (a\top b)\bot (a\top c) = b\bot c = c \\ \\ \Rightarrow $ Operatia "\top" $ este distributiva\\ in raport cu operatia "\bot"$ $!

Daca acele doua relatii de la cel putin un caz, dadeau rezultate diferite, nu am fi avut distributivitate.

Noi intotdeauna am avut a a sau b b sau c c.
Alte întrebări interesante