Matematică, întrebare adresată de danielle26, 8 ani în urmă

Am |x-|x-1|+1|<=2. Cum fac? E urgent, vă rog mult.​

Răspunsuri la întrebare

Răspuns de Rayzen
1

Metoda I:

|x-|x-1|+1|\leq 2

\Rightarrow -2\leq x-|x-1|+1\leq 2\big|-x-1

x-1\geq 0\Rightarrow x\geq 1:

\Rightarrow -2\leq x-(x-1)+1\leq 2

\Rightarrow -2\leq 2\leq 2\,\,\,\text{(A)}

\Rightarrow x\geq 1 \Rightarrow x\in [1,+\infty)

x-1&lt;0\Rightarrow x&lt;1:

\Rightarrow -2\leq x+(x-1)+1\leq 2

\Rightarrow -2\leq 2x\leq 2

\Rightarrow -1\leq x\leq 1\\

\Rightarrow (-1\leq x\leq 1)\, \wedge\, (x &lt;1)\Rightarrow x\in [-1,1)

Din ① ∨ ②:

\Rightarrow x\in [1,+\infty)\cup [-1,1) \Rightarrow \boxed{x\in [-1,+\infty)}

\\

Metoda II:

|x-|x-1|+1|\leq 2

\Rightarrow -2\leq x-|x-1|+1\leq 2\big|-x-1

\Rightarrow -x-3\leq -|x-1|\leq -x+1\big|\cdot (-1)

\Rightarrow x+3\geq |x-1|\geq x-1\\ \\ \Rightarrow \left\{\begin{aligned}|x-1|\leq x+3\\ |x-1|\geq x-1\end{aligned}\right.\Rightarrow \left\{\begin{aligned}&amp;(-x-3\leq x-1)\,\wedge\,(x-1\leq x+3)\\ &amp;\big[-(x-1)\geq x-1\big]\,\vee\,(x-1\geq x-1)\end{aligned}\right.

\Rightarrow \left\{\begin{aligned}&amp;(-2\leq 2x)\,\wedge\,(-1\leq 3)\\ &amp;(2\geq 2x)\,\vee\,(-1\geq -1)\end{aligned}\right.\Rightarrow \left\{\begin{aligned}&amp;(x\geq -1)\, \wedge\,(x\in \mathbb{R})\\ &amp;(x\leq 1)\,\vee\,(x\in \mathbb{R})\end{aligned}\right.

\Rightarrow \left\{\begin{aligned}&amp;x\geq -1\\ &amp;x\in \mathbb{R}\end{aligned}\,\right|\Rightarrow x\geq -1 \Rightarrow \boxed{x\in [-1,+\infty)}

Alte întrebări interesante