Matematică, întrebare adresată de cosmi0986, 8 ani în urmă

arată că 1/3<1/21+1/22+...+1/30<1/2
DAU COROANA


Răspunsuri la întrebare

Răspuns de OmuBacovian
3

Răspuns:

Explicație pas cu pas:

\dfrac{1}{30}&lt;\dfrac{1}{21}\\\\\dfrac{1}{30}&lt;\dfrac{1}{22}\\\\~~~~~~\vdots\\\dfrac{1}{30}\leq\dfrac{1}{30}\\\\\underbrace{\dfrac{1}{30}+\dfrac{1}{30}+\ldots+\dfrac{1}{30}}&lt;\dfrac{1}{21}+\dfrac{1}{22}+\ldots+\dfrac{1}{30}\\~~~~~~~~\texttt{de~10~ori}\\\dfrac{10}{30}&lt;\dfrac{1}{21}+\dfrac{1}{22}+\ldots+\dfrac{1}{30}\\\\\dfrac{1}{3}&lt;\dfrac{1}{21}+\dfrac{1}{22}+\ldots+\dfrac{1}{30}

\texttt{Pe de alta parte:}\\\dfrac{1}{21}&lt;\dfrac{1}{20}\\\\\dfrac{1}{22}&lt;\dfrac{1}{20}\\~~~~~~\vdots\\\dfrac{1}{30}&lt;\dfrac{1}{20}\\\\\dfrac{1}{21}+\dfrac{1}{22}+\ldots+\dfrac{1}{30}&lt;\underbrace{\dfrac{1}{30}+\dfrac{1}{30}+\dfrac{1}{30}+\ldots+\dfrac{1}{30}}\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\texttt{de 10 ori}\\\dfrac{1}{21}+\dfrac{1}{22}+\ldots+\dfrac{1}{30}&lt;\dfrac{10}{20}\\\\\dfrac{1}{21}+\dfrac{1}{22}+\ldots+\dfrac{1}{30}&lt;\dfrac{1}{2}


cosmi0986: ms
OmuBacovian: cp
Alte întrebări interesante