Arata ca:
A=22n+1•32n+3-4n•9n+1,n apartine N* este divizibil cu 270
Răspunsuri la întrebare
Răspuns de
8
270=2*5*3³
A=2^(2n+1) * 3^(2n+3)-4^n * 9^(n+1)=
=2^(2n+1)•3^(2n+3)-2^2n * 3^(2n+2)=
=2^2n * 3^(2n+2) * (2*3-3⁰)=
=2^2n * 3^(2n+2) *5=
=2^(2n-1) * 3^(2n-1) * 2 * 3³ *5=
=2^(2n-1) * 3^(2n-1) * 270= deci divizibil cu 270
A=2^(2n+1) * 3^(2n+3)-4^n * 9^(n+1)=
=2^(2n+1)•3^(2n+3)-2^2n * 3^(2n+2)=
=2^2n * 3^(2n+2) * (2*3-3⁰)=
=2^2n * 3^(2n+2) *5=
=2^(2n-1) * 3^(2n-1) * 2 * 3³ *5=
=2^(2n-1) * 3^(2n-1) * 270= deci divizibil cu 270
vioricahan:
Va multumesc frumos
Alte întrebări interesante
Limba română,
9 ani în urmă
Engleza,
9 ani în urmă
Matematică,
9 ani în urmă
Engleza,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă