Matematică, întrebare adresată de utilizator74, 8 ani în urmă

arata ca numarul natural a= 2^107+7 ^85 se divide cu 5​

Răspunsuri la întrebare

Răspuns de augustindevian
4

Răspuns:

Explicație pas cu pas:

Anexe:
Răspuns de pseudoecho
2

\displaystyle\bf\\a=2^{107}+7^{85},~a~se~divide~cu~5~daca~si~numai~daca~a \equiv 0(mod5) \Leftrightarrow\\2^{107} + 7^{85} \equiv 0(mod5).\\2^{3} \equiv 3(mod5).\\2^{4} \equiv 1(mod5).\\2^{5} \equiv 2(mod5).\\2^{6} \equiv 4(mod5).\\...\\cum~107\equiv3(mod5) \implies 2^{107} \equiv 3(mod5).\\7^1 \equiv 2(mod5).\\7^2 \equiv 4(mod5).\\7^3 \equiv 3(mod5).\\7^4 \equiv 1(mod5).\\7^5 \equiv 2(mod5).\\...\\cum~85\equiv 0(mod5) \implies 7^{85} \equiv 2(mod5).\\

\displaystyle\bf\\asadar,~2^{107} +7{85} \equiv 3+2 \equiv 5 \equiv 0 (mod5) \implies a~se~divide~ cu~5.

Alte întrebări interesante