Matematică, întrebare adresată de bichiliesperanta, 9 ani în urmă

arata ca : x,(y)+y,(z)+z,(x)=x,y(z)+y,z(x)+z,x(y)

Răspunsuri la întrebare

Răspuns de 19999991
18

x.(y) + y.(z) + z.(x) = x.y(z) + y.z(x) + z.x(y)

\frac{ \overline{xy} -  \overline{x}}{9}  + \frac{ \overline{yz} -  \overline{y}}{9}  + \frac{ \overline{zx} -  \overline{z}}{9}  =  \frac{ \overline{xyz} -  \overline{xy}}{90}  +  \frac{ \overline{yzx} -  \overline{yz}}{90}  + \frac{ \overline{zxy} -  \overline{zx}}{90}

\frac{ \overline{xy} -  \overline{x} +  \overline{yz} -  \overline{y} +  \overline{zx} -  \overline{z}}{9}  =  \frac{ \overline{xyz} -  \overline{xy} +  \overline{yzx} -  \overline{yz} +  \overline{zxy} -  \overline{zx}}{90}

\frac{ \overline{xy} -  \overline{y} +  \overline{yz} -  \overline{z} +  \overline{zx} -  \overline{x}}{9}  =  \frac{ \overline{xyz} -  \overline{yz} +  \overline{yzx} -  \overline{zx} +  \overline{zxy} -  \overline{xy}}{90}

 \frac{  \overline{x0} + \overline{y0} + \overline{z0}}{9} =  \frac{ \overline{x00} +  \overline{y00} +  \overline{z00}}{90}

 \frac{10( \overline{x} +  \overline{y} +  \overline{z})}{9}  =  \frac{100( \overline{x} +  \overline{y} +  \overline{z})}{90}

\frac{10( \overline{x} +  \overline{y} +  \overline{z})}{9}  =  \frac{10( \overline{x} +  \overline{y} +  \overline{z})}{9}  \:  \: (A)

Alte întrebări interesante