Aratati ca min(a,b)=[tex] \frac{1}{2}
[/tex] (a+b - modul de a-b)
Răspunsuri la întrebare
Răspuns de
1
Fie a,b numere reale. Demonstrati ca min{a,b}=(1/2)*(a+b-|a-b|).
___________________________________________________________
REZOLVARE
Daca a<=b:
min{a,b}=a si (1/2)*(a+b-|a-b|)=(1/2)*(a+b-(b-a))=(1/2)*(2a)=a=min{a,b}.
Daca a>b:
min{a,b}=b si (1/2)*(a+b-|a-b|)=(1/2)*(a+b-(a-b))=(1/2)*(2b)=b=min{a,b}.
Din cele doua cazuri discutate rezulta concluzia.
___________________________________________________________
REZOLVARE
Daca a<=b:
min{a,b}=a si (1/2)*(a+b-|a-b|)=(1/2)*(a+b-(b-a))=(1/2)*(2a)=a=min{a,b}.
Daca a>b:
min{a,b}=b si (1/2)*(a+b-|a-b|)=(1/2)*(a+b-(a-b))=(1/2)*(2b)=b=min{a,b}.
Din cele doua cazuri discutate rezulta concluzia.
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Engleza,
9 ani în urmă
Matematică,
9 ani în urmă