aratati ca nr. 2*n*3*n+8+2*n+1*3*n;nu este patrat perfect,unde n este nr. natural.
Răspunsuri la întrebare
Răspuns de
0
S = 2^n × 3^n+8 + 2^n+1 × 3^n
S = 2^n × 3^n × 3^8 + 2^n × 2 × 3^n
S = 6^n × 3^8 + 6^n × 2
S = 6^n × (3^8 + 2)
S = 6^n × ( 9^4 + 2)
S = 6^n × ( 6561 + 2)
S = 6^n × 6563
Uc(6^n) = 6
Uc(S) = 6×3 = 18 = 8 => S nu este patrat perfect
iar daca n = 0 =>
=> S = 6563 nu este patrat perfect
S = 2^n × 3^n × 3^8 + 2^n × 2 × 3^n
S = 6^n × 3^8 + 6^n × 2
S = 6^n × (3^8 + 2)
S = 6^n × ( 9^4 + 2)
S = 6^n × ( 6561 + 2)
S = 6^n × 6563
Uc(6^n) = 6
Uc(S) = 6×3 = 18 = 8 => S nu este patrat perfect
iar daca n = 0 =>
=> S = 6563 nu este patrat perfect
Alte întrebări interesante
Limba română,
8 ani în urmă
Limba română,
8 ani în urmă
Fizică,
8 ani în urmă
Engleza,
9 ani în urmă
Engleza,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă