Matematică, întrebare adresată de cristinaioana0576, 9 ani în urmă

Arătați ca numărul b=1+3+5+7+9+...+2019 este pătratul unui număr natural.

Răspunsuri la întrebare

Răspuns de 102533
4

Răspuns:

Explicație pas cu pas:

b = 1+3+5+7+9+...+2019  = (1+2019)·1010:2 = 2020·1010:2 =

=1010·1010 = 1010²

nr. de termeni = (2019-1):2 +1 = 1010

Răspuns de Utilizator anonim
3

Răspuns:

Explicație pas cu pas:

b = 1 + 3 + 5 + ... + 2019

b = ( 1 + 2 + 3 + ... + 2019 ) - ( 2 + 4 + 6 + ... + 2018 )

La a doua paranteză, dăm factor comun pe 2 :

b = ( 2019 × 2020 : 2 ) - 2 × ( 1 + 2 + 3 + ... + 1009 )

b = ( 2019 × 1010 ) - 2 × ( 1009 × 1010 : 2 )

Cei doi de '2' se reduc :

b = ( 2019 × 1010 ) - ( 1009 × 1010 )

Dăm factor comun pe 1010 :

b = 1010 × ( 2019 - 1009 )

b = 1010 × 1010

b = 1010² = p.p.

Alte întrebări interesante