Aratati ca oricare ar fi numerele naturale pentru care 2x-3y=4 numarul (x-3) (y+2) este divizibil cu 6
OiLoveYouO:
(x-3)×(y+2)?
Răspunsuri la întrebare
Răspuns de
1
2x-3y=4
(x-3)(y+2)=
xy+2x-3y+6=
xy+4+6=
xy+10
2x-3y=4
2x-4=3y
2(x-2)=3y
3 nu este divizibil la 2, cu alte cuvinte y trebuie sa fie divizibil la 2.
Pentru ca y este divizibil la 2 îl scriem de forma:
y=2k,
cu condiția k nu este divizibil la 3 deoarece, y ar deveni divizibil la 6, xy ar deveni mai apoi divizibil la 6, iar xy+10 nu ar mai fi divizibil la 6
2(x-2)=3×2k
Împărțim totul la 2.
x-2=3k
x=3k+2
y=2k
xy=(3k+2)(2k)
xy=6×(k la puterea a doua)+4k=(multiplu de 6)+4k
k poate fi de doua forme:
k=3q+1
4k=(3q+1)×4=12q+4
(fals deoarece 10+4=14 nedivizibil la 6)
k=3q+2
4k=(3q+2)×4=12q+8=(multiplu de 6)+2
xy=(multiplu de 6)+(multiplu de 6)+2=(multiplu de 6)+2
xy+10=(multiplu de 6)+2+10 =(multiplu de 6)+12=multiplu de 6
Astfel am demonstrat ca (x-3)(y+2) este divizibil cu 6
(x-3)(y+2)=
xy+2x-3y+6=
xy+4+6=
xy+10
2x-3y=4
2x-4=3y
2(x-2)=3y
3 nu este divizibil la 2, cu alte cuvinte y trebuie sa fie divizibil la 2.
Pentru ca y este divizibil la 2 îl scriem de forma:
y=2k,
cu condiția k nu este divizibil la 3 deoarece, y ar deveni divizibil la 6, xy ar deveni mai apoi divizibil la 6, iar xy+10 nu ar mai fi divizibil la 6
2(x-2)=3×2k
Împărțim totul la 2.
x-2=3k
x=3k+2
y=2k
xy=(3k+2)(2k)
xy=6×(k la puterea a doua)+4k=(multiplu de 6)+4k
k poate fi de doua forme:
k=3q+1
4k=(3q+1)×4=12q+4
(fals deoarece 10+4=14 nedivizibil la 6)
k=3q+2
4k=(3q+2)×4=12q+8=(multiplu de 6)+2
xy=(multiplu de 6)+(multiplu de 6)+2=(multiplu de 6)+2
xy+10=(multiplu de 6)+2+10 =(multiplu de 6)+12=multiplu de 6
Astfel am demonstrat ca (x-3)(y+2) este divizibil cu 6
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Geografie,
8 ani în urmă
Limba română,
9 ani în urmă
Franceza,
9 ani în urmă