Matematică, întrebare adresată de ioana200585, 8 ani în urmă

Aratati ca :

 \frac{1}{2 \times 3}  +  \frac{1}{3 \times 4}  +  \frac{1}{4 \times 5}  + ....... \frac{1}{2015 \times 2016}  <  \frac{1}{2}

Răspunsuri la întrebare

Răspuns de Utilizator anonim
1

\text{Tinem cont de faptul ca:}\\\dfrac{1}{k(k+1)}=\dfrac{k+1-k}{k(k+1)}=\dfrac{1}{k}-\dfrac{1}{k+1}\\\\\dfrac{1}{2\cdot 3}+\dfrac{1}{3\cdot 4}+\dfrac{1}{4\cdot 5}+\ldots +\dfrac{1}{2015\cdot 2016}<\dfrac{1}{2}\\\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\ldots+\dfrac{1}{2015}-\dfrac{1}{2016}<\dfrac{1}{2}\\\text{Termenii se reduc:}\\\dfrac{1}{2}-\dfrac{1}{2016}<\dfrac{1}{2}\\-\dfrac{1}{2016}<0(Adevarat)

Răspuns de saoirse1
1

Vezi atasamentul ....

Anexe:
Alte întrebări interesante