C13) Determinați numărul real pozitiv , știind că x, 6 și x-5 sunt în progresie geometrică .
C16) Determinați primul termen al progresiei geometrice cu termeni pozitivi b(1) , 6 , b(3) , 24 ... .
E3) Fie ( b(n) ) o progresie geometrică . Să se determine suma S(n) a primilor n termeni dacă : a) b(1) =3 ; q =2 ; n =6 . b) b(1) = 2,5 ; q =1,5 ; n =5 d) progresia geometrica 9 ; -3 ; 1 ; ... și n=7 e) b1 = -1 , n = 100 , q =-1
E4) Să se decidă dacă este progresie geometrică un șir ( a(n) ) cu termenul general : a(n) = 2 la puterea n
Răspunsuri la întrebare
Răspuns de
9
C13) a1 = x a1·q = 6 x·q = 6 x·q² = x - 5
x·q²/x·q = (x-5)/6 q = (x - 5)/6 6q = x- 5 6·6/x = x - 5 36 = x² - 5x
x²- 5x - 36 = 0 ⇒ x ∈ {9, - 4}
C16) q·b(1) = 6 q·6 = b(3) = q²·b(1) 24 = q³·b(1)
q·6 /24 = q²·b(1) /[q³·b(1)] q/4 = 1/q q² = 4 q = 2; b(1) = 3
E(3) a) b1 = 3 q = 2 n = 6 S6 = 3ₓ(2⁶ - 1) /1 = 189
b) S5 = 2,5(1,5⁵ - 1)/ 0,5 = 32,96875
d) -3 = 9q q = - 1/3 S = 9[(-1/3)⁷- 1)/(-1/3 - 1) = 9(1/2187 + 1)/(4/3) =
= 9ₓ3/4 ₓ2188/2187 = 547/81
E4) a(n) = 2ⁿ a(1) = 2 a(2) = 2² a(3) = 2³
a(2)/a(1) = 2 = q = a(3) /a(2) ⇒ este progresie geometrica
x·q²/x·q = (x-5)/6 q = (x - 5)/6 6q = x- 5 6·6/x = x - 5 36 = x² - 5x
x²- 5x - 36 = 0 ⇒ x ∈ {9, - 4}
C16) q·b(1) = 6 q·6 = b(3) = q²·b(1) 24 = q³·b(1)
q·6 /24 = q²·b(1) /[q³·b(1)] q/4 = 1/q q² = 4 q = 2; b(1) = 3
E(3) a) b1 = 3 q = 2 n = 6 S6 = 3ₓ(2⁶ - 1) /1 = 189
b) S5 = 2,5(1,5⁵ - 1)/ 0,5 = 32,96875
d) -3 = 9q q = - 1/3 S = 9[(-1/3)⁷- 1)/(-1/3 - 1) = 9(1/2187 + 1)/(4/3) =
= 9ₓ3/4 ₓ2188/2187 = 547/81
E4) a(n) = 2ⁿ a(1) = 2 a(2) = 2² a(3) = 2³
a(2)/a(1) = 2 = q = a(3) /a(2) ⇒ este progresie geometrica
Flaviusel12:
La E3) mai era si e
Alte întrebări interesante
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
9 ani în urmă
Engleza,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă