Matematică, întrebare adresată de catalin200717, 8 ani în urmă

Calculați:(1/100+2/101+3/102+.......+101/200-101):(1/100+1/101+.....+1/200)
Vă rog cât mai repede​

Răspunsuri la întrebare

Răspuns de Rayzen
2

\dfrac{\frac{1}{100}+\frac{2}{101}+\frac{3}{102}+...+\frac{101}{200}-101}{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=

= \dfrac{(\frac{1}{100}-1)+(\frac{2}{101}-1)+(\frac{3}{102}-1)+...+(\frac{101}{200}-1)}{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}

= \dfrac{\frac{1-100}{100}+\frac{2-101}{101}+\frac{3-102}{102}+...+\frac{101-200}{200}}{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}

=\dfrac{\frac{-99}{100}+\frac{-99}{101}+\frac{-99}{102}+...+\frac{-99}{200}}{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}

=\dfrac{-99\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}

=-99\cdot \dfrac{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}{\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}

=-99\cdot 1

=-99


catalin200717: mulțumesc foarte mult
catalin200717: ți-aș da coroană dar nu apare acel semn
Rayzen: Cu plăcere! :>
Alte întrebări interesante