Matematică, întrebare adresată de santaclausgirl21, 9 ani în urmă

Calculați:a
 \frac{ \sqrt{} 2 + 1} {2} - \frac{ \sqrt{} 2}{2 - \sqrt{2} } \div \frac{1}{1 - \sqrt{2} } + { {( - 2)}^{ - 1} } - \frac{1}{ \sqrt{2} }
b)Va rog nu știu să rezolv dau coroană reepede!

Anexe:

Răspunsuri la întrebare

Răspuns de samsunggenius200
1
a)  \frac{ \sqrt{2}+1 }{2}- \frac{ \sqrt{2} }{2- \sqrt{2} }: \frac{1}{1- \sqrt{2} }+(-2) ^{-1}- \frac{1}{ \sqrt{2} } =  \frac{ \sqrt{2}+1 }{2}- \frac{ \sqrt{2}*(2+ \sqrt{2} ) }{2}*(1- \sqrt{2)}-2 ^{-1}- \frac{ \sqrt{2} }{2}=    \frac{ \sqrt{2}+1 }{2}- \frac{2 \sqrt{2}+2 }{2}*(1- \sqrt{2})      - \frac{1}{2}- \frac{ \sqrt{2} }{2}=\frac{ \sqrt{2}+1 }{2}- \frac{2( \sqrt{2}+1) }{2}*(1- \sqrt{2})      - \frac{1}{2}- \frac{ \sqrt{2} }{2}=   \frac{ \sqrt{2}+1 }{2}- ( \sqrt{2}+1)*(1- \sqrt{2})      - \frac{1}{2}- \frac{ \sqrt{2} }{2}=   \frac{ \sqrt{2}+1 }{2}- (1+ \sqrt{2})*(1- \sqrt{2})      - \frac{1}{2}- \frac{ \sqrt{2} }{2}=   \frac{ \sqrt{2}+1 }{2}- (1-2)   - \frac{1}{2}- \frac{ \sqrt{2} }{2}=\frac{ \sqrt{2}+1 }{2}- (-1)   - \frac{1}{2}- \frac{ \sqrt{2} }{2}=\frac{ \sqrt{2}+1 }{2}+ 1   - \frac{1}{2}- \frac{ \sqrt{2} }{2}=\frac{ \sqrt{2}+1}{2} + \frac{1}{2}- \frac{ \sqrt{2} }{2}= \frac{ \sqrt{2}+1+1- \sqrt{2}  }{2}= \frac{2}{2}=1

b)  \frac{ \sqrt{28}- \sqrt{72}+ \sqrt{80}   }{ \sqrt{63}- \sqrt{162}+ \sqrt{180}    }+ \frac{ \sqrt{3}-1 }{ \sqrt{3} }+ \frac{ \sqrt{5}- \sqrt{3}  }{ \sqrt{15} }+ \frac{ \sqrt{7}- \sqrt{5}  }{ \sqrt{35} }+ \frac{ \sqrt{9}- \sqrt{7}  }{ \sqrt{63} }=      \frac{2 \sqrt{7}-6 \sqrt{2}+4 \sqrt{5}   }{3 \sqrt{7}-9 \sqrt{2}+6 \sqrt{5}   }+ \frac{( \sqrt{3} -1) \sqrt{3} }{3} + \frac{ \sqrt{5}- \sqrt{3} }{ \sqrt{15} }+ \frac{ \sqrt{7}- \sqrt{5} }{ \sqrt{35} }+ \frac{3- \sqrt{7} }{3 \sqrt{7} }=  \frac{2( \sqrt{7}-3 \sqrt{2}+2 \sqrt{5})   }{3( \sqrt{7}-3 \sqrt{2}+2 \sqrt{5} )  }+ \frac{3- \sqrt{3} }{3}+   \frac{ \sqrt{5}- \sqrt{3} }{ \sqrt{15} }+ \frac{ \sqrt{7}- \sqrt{5} }{ \sqrt{35} }+ \frac{(3- \sqrt{7}) \sqrt{7}  }{21} = \frac{2}{3}+  \frac{3- \sqrt{3} }{3}+ \frac{ \sqrt{5}- \sqrt{3} }{ \sqrt{15} }+ \frac{ \sqrt{7}- \sqrt{5} }{ \sqrt{35} }+ \frac{3 \sqrt{7} -7}{21}=  \frac{14+7(3- \sqrt{3})+3 \sqrt{7}  }{21}+ \frac{( \sqrt{5}- \sqrt{3} ) \sqrt{15}  }{15}+ \frac{( \sqrt{7}- \sqrt{5})}  { \sqrt{35} }   = \frac{14+21-7 \sqrt{3}+3 \sqrt{7}-7  }{21}+ \frac{ \sqrt{75}- \sqrt{45}  }{15}+ \frac{ \sqrt{245}- \sqrt{175}  }{ 35 }=    \frac{28-7 \sqrt{3}+3 \sqrt{7}  }{21}+ \frac{5 \sqrt{3}-3 \sqrt{5}  }{15}+ \frac{7 \sqrt{5}-5 \sqrt{7}  }{35}   = \frac{5(28-7 \sqrt{3}+3 \sqrt{7})+7(5 \sqrt{3}-3 \sqrt{5})    }{105}+  \frac{7 \sqrt{5}-5 \sqrt{7}  }{35}   = \frac{140-35 \sqrt{3}+15 \sqrt{7}+35 \sqrt{3}-21 \sqrt{5}    }{105}+  \frac{7 \sqrt{5}-5 \sqrt{7}  }{35}   = \frac{140+15 \sqrt{7}-21 \sqrt{5}+3(7 \sqrt{5}-5 \sqrt{7})    }{105}= \frac{140+15 \sqrt{7}-21 \sqrt{5}+21 \sqrt{5}-15 \sqrt{7}    }{105}= \frac{140}{105}= \frac{4}{3}

Alte întrebări interesante