Matematică, întrebare adresată de miorellupup8v33v, 9 ani în urmă

Calculati aria triunghiului format din pnctele A(-2,2) B(1.0) C(-1,1)

Răspunsuri la întrebare

Răspuns de abc112
0
A(-2,2)

B(1,0)

C(-1,1)

AB=\sqrt{{(x_{B}-x_{A})}^{2}+{(y_{B}-y_{A})}^{2}}

AB=\sqrt{{(1 + 2)}^{2}+{(0-2)}^{2}}

AB=\sqrt{{3}^{2}+{(-2)}^{2}}

AB=\sqrt{9+4}

AB=\sqrt{13}

AC=\sqrt{{(x_{C}-x_{A})}^{2}+{(y_{C}-y_{A})}^{2}}

AC=\sqrt{{( - 1 + 2)}^{2}+{(1-2)}^{2}}

AC=\sqrt{{1}^{2}+{(-1)}^{2}}

AC=\sqrt{1 + 1}

AC=\sqrt{2}

BC=\sqrt{{(x_{C}-x_{B})}^{2}+{(y_{C}-y_{B})}^{2}}

BC=\sqrt{{( - 1-1)}^{2}+{(1-0)}^{2}}

BC=\sqrt{{( - 2)}^{2}+{1}^{2}}

BC=\sqrt{4+1}

BC=\sqrt{5}

Pentru arie folosim formula lui Heron :

AB=a

AC=b

BC=c

p = \frac{a + b + c}{2}

p = \frac{ \sqrt{13} + \sqrt{2} + \sqrt{5} }{2}

A=\sqrt{p(p-a)(p-b)(p-c)}

A=\sqrt{ \frac{ \sqrt{13} + \sqrt{2} + \sqrt{5} }{2} ( \frac{ \sqrt{13} + \sqrt{2} + \sqrt{5} }{2} - \sqrt{13} )( \frac{ \sqrt{13} + \sqrt{2} + \sqrt{5} }{2} - \sqrt{2} )( \frac{ \sqrt{13} + \sqrt{2} + \sqrt{5} }{2} - \sqrt{5} )}

A=\sqrt{ \frac{ \sqrt{13} + \sqrt{2} + \sqrt{5} }{2} \times \frac{ - \sqrt{13} + \sqrt{2} + \sqrt{5} }{2} \times \frac{ \sqrt{13} - \sqrt{2} + \sqrt{5} }{2} \times \frac{ \sqrt{13} + \sqrt{2} - \sqrt{5} }{2} }

A = \sqrt{ \frac{( \sqrt{13} + \sqrt{2} + \sqrt{5} )( - \sqrt{13} + \sqrt{2} + \sqrt{5} )( \sqrt{13} - \sqrt{2} + \sqrt{5} )( \sqrt{13} + \sqrt{2} - \sqrt{5} )}{16} }

( \sqrt{13} + \sqrt{2} + \sqrt{5} )( - \sqrt{13} + \sqrt{2} + \sqrt{5} ) = - 1 + \sqrt{26} + \sqrt{65} - \sqrt{26} + 2 + \sqrt{10} - \sqrt{65} + \sqrt{10} + 5 = 6 + 2 \sqrt{10}

( \sqrt{13} - \sqrt{2} + \sqrt{5} )( \sqrt{13} + \sqrt{2} - \sqrt{5} ) = 13 + \sqrt{26} - \sqrt{65} - \sqrt{26} - 2 + \sqrt{10} + \sqrt{65} + \sqrt{10} - 5 = 6 + 2 \sqrt{10}

A = \sqrt{ \frac{(6 + 2 \sqrt{10} )(6 + 2 \sqrt{10}) }{16} }

A = \sqrt{ \frac{ {(6 + 2 \sqrt{10} )}^{2} }{ {4}^{2} } }

A = \frac{6 + 2 \sqrt{10} }{ 4}

A = \frac{2(3 + \sqrt{10} )}{4}

A = \frac{3 + \sqrt{10} }{2}
Alte întrebări interesante